ESO: a Frame based Ontology for Events and Implied Situations

Roxane Segers
The Network Institute
VU University Amsterdam
r.h.segers@vu.nl

Luciano Serafini
Fondazione Bruno Kessler
Serafini@fbk.eu

Piek Vossen
The Network Institute
VU University Amsterdam
piek.vossen@vu.nl

Egoitz Laparra
IXA Group
Universidad del Pais Vasco

Marco Rospocher
Fondazione Bruno Kessler
rospocher@fbk.eu

German Rigau
IXA Group
Universidad del Pais Vasco

Egoitz.Laparralehu.es German.Rigaulehu.es

Abstract

This paper presents the Event and Situ-
ation Ontology (ESO), a resource which
formalizes the pre and post conditions of
events and the roles of the entities af-
fected by an event. The ontology reuses
and maps across existing resources such as
Wordnet, SUMO and Framenet and is de-
signed for extracting information from text
that otherwise would have been implicit.
We present the metamodel of the ontology
and the procedure for building the first ver-
sion of ESO.

1 Introduction

Technology for detecting events and their partic-
ipants in text has become widely available, e.g.
(Bjorkelund et al., 2009) and (Das et al., 2010).
This technology relies on large-scale language re-
sources with event semantics such as PropBank
(Palmer et al., 2005) and FrameNet (Baker et al.,
1998). Within the NewsReader project,! we ex-
ploit this Semantic Role Labeling (SRL) technol-
ogy for the purpose of processing large streams
of news in different languages. More specifically,
we processed millions of English news articles on
the global automotive industry covering a period
of 10 years, from 2003 till 2013. The processing
of such data sets generates hundreds of millions
of events involving hundred-thousands of partici-
pants, mostly people and organizations. The data
enables us to discover long-term developments
in this global industry, for example by chaining
events over time around particular participants.
Knowledge about what took place in an indus-
try during the financial crisis is useful by itself but
it does not show clearly the implications of these
events. For example, if there is a management

1 .
www.newsreader—project.eu

change in a company, we may know that some-
thing happened and who is involved but we still
do not know the implications of the event. Fur-
thermore, events can be expressed in many differ-
ent ways (firing, quitting, leaving, resigning) and
still share the same implications. However, if the
implications of an event could be made explicit,
we would be able to derive changes in property
values for vast amounts of events over long pe-
riods of time. Consider for example, the expres-
sion Y fires X’ which implies that X must have
been working for Y before the firing and that X
is not working for Y after the firing. Likewise,
the expression X works for Y’, states that some
situation holds during some period of time. De-
riving these implications demands a model that a)
defines what the implications of events are; b) de-
fines what entities are affected by an event and c)
defines how the implications of dynamic and static
events can be linked. Though work on deductive
reasoning over Frame annotated text (e.g. (Schef-
fczyk et al., 2006)) and defining pre and post sit-
uations of predicates exist ((Im and Pustejovsky,
2009) and (Im and Pustejovsky, 2010)), to the best
of our knowledge, ontologies that model all three
aspects do not exist. Most closest comes the exten-
sion to DOLCE-LITE (Hicks, 2009) that was de-
veloped in the KYOTO project.” In this ontology,
property values are modeled as quality regions for
reasoning. However, these quality regions are not
connected to the events in the ontology as pre and
post conditions. Finally, the axioms and defini-
tions provided in generic ontologies aim at provid-
ing a comprehensive semantic specification of the
concepts. There is no guarantee that these speci-
fications also capture the kind of changes that are
relevant for our domain and they most likely cap-
ture many implications that are not relevant. Rea-
soning using generic ontologies can thus be seen
as undirected reasoning without a guaranteed out-

http://kyoto-project.eu



post pre

situation situation
=

| nwr:JoiningAnOrganization |'

\ nwr:LeavingAnOrganization |

\ \d

X employedAt Y
Y employs X

I during
! situation

nwr:InEmployment

"X works for Y"

Figure 1: Dynamic and static event expressions
and their shared situation.

come.

We therefore developed the Event and Situation
Ontology to enhance the extraction and linking of
dynamic and static events and their implications
in text.> By explicitly modeling the implications
pertaining to events, we can extract sequences of
states and changes over time regardless of if this
information was directly expressed in text, or in-
ferred by some reasoner. Figure 1 shows part of
our model for expressions for dynamic (hire, fire)
and static events (works for) and their associated
situation (at the centre of the figure).

The development of ESO was carried out in the
background of the Newsreader project. The Predi-
cate Matrix (de Lacalle et al., 2014), that integrates
predicate and role information from FrameNet,
VerbNet, PropBank and Wordnet, is used to assign
role and predicate annotations on document level.
All definitions and assertions in ESO are fed back
to the Predicate Matrix. As such the ontology pro-
vides an additional layer of annotations that allows
inferencing over events and implications.

Following best practices in Semantic Web tech-
nologies, ESO reuses parts of two existing vocab-
ularies: there are mappings from our ontology to
Framenet on class and role level and mappings to
SUMO on class level. As such, we can define our
classes without adhering to modeling choices in
Framenet and SUMO. Through these mappings,
ESO serves as a hub to other vocabularies as well,
such as Princeton Wordnet (PWN) and the Word-
nets in the Global Wordnet grid. As such, ESO
provides a domain-specific hierarchy of events and
their implications across languages.

The remainder of this paper is organized as

3The ontology can be accessed at http://www.newsreader-
project.eu/results/event-and-situation-ontology/

follows; section 2 presents the ontological meta
model; section 3 elaborates on building ESO and
the different modeling choices; in section 4 we
discuss the integration of ESO and the Predicate
Matrix; in section 5 we show how ESO is applied
to our document collection. We conclude in sec-
tion 6 with a discussion and some outlines for fu-
ture work.

2 Ontological meta model

The ontology for NewsReader should enable us to
retrieve property values over time for entities in
large data sets. We should be able to query the
data set for all the companies a person worked for
in the last 10 years and when, or what managers
worked for a company in the last 10 years and in
which periods. We cannot rely on the fact that this
information is directly reported in the news arti-
cles that we process. In many cases, it is only in-
directly expressed by the events and changes men-
tioned. Given this, we can formulate the following
requirements for the ontology:

e model properties and values

e model the pre and post conditions that apply
to the events

e model roles of entities for the events in rela-
tion to these pre and post conditions

e model the reasoning to derive situations from
pre and post conditions associated with the
events and roles

We next describe the ontology meta model to meet
these requirements.* In addition, we need to map
the words that we find in the news to event and
property classes. We also need to map the seman-
tic roles assigned by the SRL module to the roles
in ESO. Finally, we want to be able to transfer
these mappings from English to other languages.
These mappings are discussed in sections 3 and 4.

ESO is an OWL 2 ontology.’ It assumes that the
semantic representation of text is converted to an
RDF representation of event and entity instances
between which relations are expressed as triples.
Such a representation is schematically represented
as follows:

*A more comprehensive description of the model and
its instantiating can be found online: http://www.

newsreader—-project.eu/
Shttp://www.w3.0rg/2001/sw/wiki/OWL



:obj-graph-eventX {
reventX

a nwr:LeavingAnOrganization;

nwr:LeavingAnOrganization_employee :employeeh;
nwr:LeavingAnOrganization_employee :employeeB;
nwr:LeavingAnOrganization_employer :companyA;

sem:hasTime :time_eventX.

These statements specify that the event is of a
certain type (nwr:LeavingAnOrganization), that it
involves a entity playing the role of an employer
(:companyA) and two entities playing the role of
employees (:employeeA,:employeeB), and that it
occurred at a certain time (:time_eventX). From
these representations, we need to derive the state-
ments that express the pre event states and post
event states applying to the entities involved. For
this purpose, we defined five core classes in ESO,
which are further specialized in subclasses:

Event: this class is the root of the taxonomy of event types.
Any event detected in a text will be an instance of some
class of this taxonomys;

DynamicEvent: this is a subclass of Event (for which dy-
namic changes are defined) that apply to FrameNet
frames that can be considered as dynamic events (e.g.
fn:Firing);

StaticEvent: this is another subclass of Event for “static”
event types which capture more static circumstances
(e.g., fn:Being_employed, fn:Being_located); they typ-
ically directly trigger a situation holding at the time the
event occurs (a “during situation”).

Situation: the individuals of this class are actual
pre/post/during situations that will be instanti-
ated starting from the event instances detected in the
text;

SituationRule: the individuals of this class enable to en-
code the rules for instantiating pre/post/during situa-
tions when a certain type of event is detected;

Analogously to FrameNet frame elements for
frames, ESO represents the role of an entity in an
event. Roles are formalized as object properties:
this way, an event instance :eventX can be related
to an entity :entityZ participating in it with asser-
tions of the form:

:eventX nwr:hasRoleY :entityZ

where nwr:hasRoleY specifies the role of :entityZ
in :eventX. Each object property defining a role in
the ontology is defined as subproperty of the top
object property nwr:hasRole: this way, given any
event, we can retrieve the entities participating in
it by looking at assertions having as predicate the
property nwr:hasRole.

2.1 Formalization of the rules for
instantiating situations from events

Each nwr:SituationRule individual is specialized
to define exactly how the triples inside the Situa-
tion named graph have to be defined. This is done
by defining an individual for each assertion to be
created, which has three annotation properties as-
sertions:

nwr:hasSituationAssertionSubject: the object of this
triple is the role of the event to be used as subject in
the assertion, e.g. ’employment-employee’;

nwr:hasSituationAssertionProperty: the object of this
triple is the predicate to be used in the assertion. It
is either a binary property or an unary property, e.g.
’employedAt’;

nwr:hasSituationAssertionObject: the object of this triple
is the role of the event to be used as object in the asser-
tion, e.g. ’employment-employer’.

Specific nwr:SituationRules are defined that are
triggered as the pre or post situation value re-
lated to situations of particular classes of events.
By triggering these rules, a reasoner can thus in-
fer from the fact that a particular situation be-
longs to the class LeavingAnOrganization and
has entity instances in certain roles that a) one
of these entities at some point in time was em-
ployed by the other and b) after that point in
time it was not. Consider for instance the
nwr:pre_ChangeOfPossession situation rule:
nwr:pre_ChangeOfPossession

nwr:hasSituationRuleAssertion
nwr:hasSituationRuleAssertion

pre_ChangeOfPossessionAl;
pre_ChangeOfPossessionA2.

This rule triggers the instantiation of two
assertions, nwr:pre_ChangeOfPossessionAl and
nwr:pre_ChangeOfPossessionA2, defined as fol-
lows:

nwr:pre_ChangeOfPossessionAl

nwr:hasSituationAssertionSubject nwr:possessionOwnerl;
nwr:hasSituationAssertionProperty nwr:possess;
hasSituationAssertionObject nwr:possessionTheme.

nwr:pre_ChangeOfPossessionA2

nwr:hasSituationAssertionSubject nwr:possessionOwner2;
nwr:hasSituationAssertionProperty nwr:notPossess;
hasSituationAssertionObject nwr:possessionTheme.

Therefore, from an event instance :eventX of
type nwr:ChangeOfPossession, having roles :in-
stanceX (nwr:possessionOwner1 role), :instanceY
(nwr:possessionOwner2 role), and :instanceZ
(nwr:possessionTheme role), by interpreting the
aforementioned rule schema we can instantiate a
pre-situation named graph, :eventX _pre, defined
as follows:

:eventX_pre {

:instanceX
:instanceY

:instancez .
:instancez .

Nwr:possess
nwr:notPossess



where the first assertion is created due to
nwr:pre_ChangeOfPossessionAl, and the second
assertion to nwr:pre_ChangeOfPossessionA2. In
addition to rules that connect static relations to dy-
namic changes, the ontology also models the tem-
poral implications. The time at which the dynamic
situation takes places thus marks the beginning or
ending of the static situation. For further details on
the derived temporal implications, we need to re-
fer the reader to (van Erp et al., 2014) due to space
limits.

2.2 Mappings from external resources to
ESO

A key ingredient of the ESO ontology is the map-
ping of the FrameNet frames and frame elements
to the event types and roles that we defined. This
mapping is necessary to translate the role annota-
tions provided by the SRL module to our ontology
vocabulary, exploited by the reasoning module to
instantiate situations from events.

For each event type (modelled as class
in the ontology) and each role (modelled as
object property) we defined some annota-
tions (nwr:correspondsToFrameNetFrame and
nwr:correspondsToFrameNetElement), repre-
senting the corresponding frames and frame
elements. For instance, nwr:Giving has three an-
notations via nwr:correspondsToFrameNetFrame
to frames fn:Giving, fn:Sending, and fn:Supply,
meaning that if a frame of type fn:Supply
or any of the others is identified in the text,
it has to be considered as an event of type
nwr:Giving, and therefore pre and post situation
rules defined for nwr:Giving should be triggered.
Similarly, the role nwr:possession-owner_1 is
mapped via nwr:correspondsToFrameNetElement

assertions to frame elements: fn:Seller,
fn:Supplier, fn:Lender, fn:Sender, fn:Donor,
fn:Source, fn:Agent, fn:Exporter, and
fn:Victim.  We also defined mappings from

the ESO event types to SUMOS classes via
nwr:correspondsToSUMOC]lass annotation
assertions.

These mappings make clear that our ontology
is providing only a partial definition for concepts.
We only need to capture the implications for the
reasoning as a result of the pre and post condi-
tion states related to the events and not all other
aspects of meaning. As such there is no difference

®http://www.ontologyportal.org

for the ownership implication if somebody takes
something or steals it.

3 Building ESO

In this section, we describe in more detail how the
different components of the ontology were build.
As input data for ESO, we used a collection of
63K English text documents that were processed
by our NLP pipeline in a first run. To obtain the
most salient event predicates from this collection,
we annotated all predicates with a FrameNet map-
ping as being contextual (increase, hire) or related
to communication (say), cognition (think) or per-
ception (see). Only the contextual predicates were
used for building the ontology. Thus, we started
with 234 frames and 1306 unique predicates po-
tentiality important for the domain. To scope this
set, we discarded low frequent frames and those
frames that were clearly nor related to the car do-
main e.g. fn:Cooking_creation. As a result, an un-
structured set of 92 frames remained.

First, we tried to conceptually select and group
the car frames for the ontology by using the
FrameNet inheritance relations. This turned out to
be problematic as FrameNet has no full subclass
hierarchy. Also, some frames are associated with
lexical units that represent different concepts from
a more ontological point of view. For instance
fn:Forming_Relationships groups both marry and
divorce into a frame while different pre and post
situations will hold. For deriving a conceptual
structure for the frames, we therefore decided to
use the SUMO ontology’ as a background model
as it is freely available, well-documented, it has
a good coverage, and it is mapped to the English
Wordnet. The event hierarchy for ESO was de-
rived in five steps.

Step 1. The unstructured set of 92 frames was
mapped manually to SUMO classes by means of
subclass and equivalence relations. We define a
frame and all its content as a class denoting a con-
cept of change or state for which at least one ba-
sic implication should hold. If due to different
modeling choices between SUMO and FrameNet
a near equivalence, subclass or superclass map-
ping was not possible, we stored the frame as can-
didate class without mapping.

Step 2. From the mappings, we selected
four top nodes in SUMO that represented the
main conceptual clusters for the frames express-

7www.ontologyportal.org



ing events: Motion, InternalChange, ChangeOf-
Possession and IntentionalProcess. In this step,
we also started to group similar frames into one
class. For instance, the main difference between
the frames Departing and Quitting_a_place is a
specification of the entity that moves. For our pur-
poses, this level of granularity is not necessary.
As such, both frames have been defined as corre-
sponding to the ESO class Departing and SUMO
class Leaving.

Step 3. Next, we checked the SUMO class hier-
archy of Motion, InternalChange, ChangeOfPos-
session and IntentionalProcess to select additional
classes that may be of importance for the car do-
main, such as Investing and Importing.

Step 4. Based on this, we built four initial sub
hierarchies consisting of ESO classes with a map-
ping to SUMO and FrameNet, and potential ESO
classes with only a mapping to SUMO.

Step 5. To increase the coverage, we manu-
ally mapped back from ESO classes to FrameNet
frames. For this, we used the existing frame-
to-frame relations in FrameNet (Ruppenhofer et
al., 2006). These additional frames were either
a) found in the document collection, but previ-
ously ruled out by the thresholds or, b) not found
in the car data but a frame for the ESO class
does exist in FrameNet. In some cases, frames
were found for which we had no SUMO-based
ESO class. In those cases, a new ESO subclass
was defined. Also, for some SUMO-based ESO
classes no corresponding frame could be found.
These classes were kept in the ontology nonever-
theless as placeholder for future extensions. As
such, we have ESO classes with mappings to both
FrameNet and SUMO, ESO classes with only a
mapping to FrameNet, and ESO classes with only
a mapping to SUMO. Furthermore, to keep the hi-
erarchy clean, we opted to use single inheritance
only for all event classes in the ontology.

3.1 Properties for defining pre and post
situations of an event

The second component of the ontology consists
of properties for pre and post situations that state
which situation holds before and after an event.
All situation properties were hand build based on
the shared semantics of the predicates related to
a frame. In this version of the ontology only one
salient property is defined, but the model allows
for additional properties. We opted to define sit-

uation properties at the highest class as possible
to allow the inheritance of properties by all sub-
classes.

Since we generalize over different lexicaliza-
tions and syntactical structures of events, it is in
some cases difficult to define properties for pre
and post situations at the conceptual level. With-
out context, some classes are interpretable as both
dynamic and static events which has an effect on
what situations hold before or after the event. The
class ’Borrowing’ for instance, can be the moment
of a change of possession (dynamic event) or the
time span someone has an entity in possession
(static event). For this version of the ontology, we
defined no pre and post situations for this type of
class.

Another issue is that some properties currently
may be either too strong or to weak. By intu-
ition, a property such as "hasInPossession’ should
hold for the class ChangeOfPossession and all
its subclasses. However, the semantics of this
property seems weakened from actual *ownership’
into a more vague ’having’ for a class such as
nwr:Taking. From the results of the reasoner, we
can finetune these implications if necessary.

For static events, we defined situation proper-
ties that are true for the duration of the static
event. For the class nwr:InEmployment the prop-
erty employedAt defines that some person is
employed at some employer. The same prop-
erty is used as pre situation for the event class
nwr:LeavingAnOrganization and the post situ-
ation for the class nwr:JoiningAnOrganization.
Where applicable, related events and situations
have been related as such by means of a shared sit-
uation property. As a result, the relation between
an inferred situation of a dynamic event and the
more explicit situation of a static event becomes
more easily understandable.

3.2 Roles for the entities affected by an event

For the roles of the entities that are affected by an
event, we used a selection of FrameNet Frame El-
ements (FEs), derived from the mappings of an
ESO class to FrameNet frames. Thus, we de-
fine which roles are important for modeling our
domain and which roles are not. For the class
nwr:Translocation and all its subclasses, the en-
tity that translocates maps to FrameNet FE Self-
mover, Theme and Driver and the entity that ex-
presses the location to the FEs Location and Goal.



SUMO: JoiningAnorganization
fn: Hiring

SUMO: LeavingAnOrganization
fn: Firing

fn: Get_a_job fn: Quitting

post pre
situation situation
nwr:JoiningAnOrganization [~~~ "| ‘I‘ ~ 77| nwr:LeavingAnOrganization
1

\ \4
— X employedAt Y ~
X= fn: Employee Y employs X 'Y=fn: Employer

4 during
! situation

nwr:InEmployment

fn: Being_employed
fn: Employing

Figure 2: Dynamic and static events, situations
and mappings to SUMO and FrameNet

Other less salient FEs that are specified in translo-
cation frames such as Manner, Distance and Speed
are not incorporated. Explicit and necessary role
selection also scopes the pre and post situations to
events: running around naked (no source or goal)
is ruled out as dynamic event, while the formu-
lated pre and post situations will hold for he is
running to Rome (goal).

3.3 Event and Situation Ontology version 1

The first version of the ESO now consists of 59
event classes divided over dynamic events (50)
and static events (9). The dynamic event class
hierarchy consists of four major nodes: Change-
OfPossession (16 subclasses), Motion (10 sub-
classes), InternalChange (11 subclasses) and In-
tentionalEvents (11 subclasses). For 53 classes
we have one or multiple mappings to FrameNet
frames. In total, 94 mappings to FrameNet were
made, covering 532 unique combinations of a
predicate and a frame. Additionally, 49 out of 59
event classes have a mapping to SUMO. Further-
more, we defined 24 properties (20 binary and 4
unary) such as ’atPlace’, ’employedAt’ and ’has-
InPossession’ which define the situations state-
ments for 35 out of 50 dynamic event classes and
all 9 static event classes. Finally, we defined 33
different roles for the entities affected by an event
or situation. Each role is mapped to one or more
Frame Entities in FrameNet (60 mappings in to-
tal).

The interplay between static and dynamic event
classes, situations and mappings to SUMO and
FrameNet is presented in figure 2.

4 Integrating ESO into the Predicate
Matrix

The previous sections explained how to integrate
FrameNet and the Domain Ontology to obtain
ESO representations of the SRL output. Obvi-
ously, this translation is only available for annota-
tions based on FrameNet while the SRL modules
use PropBank predicate models. For this purpose,
we can make use of the interoperable capabilities
offered by the PredicateMatrix (PM) (de Lacalle
et al., 2014). The PM is an automatic extension
of SemLink (Palmer, 2009) that merges several
models of predicates such as VerbNet (Kipper et
al., 2000), FrameNet (Baker et al., 1998), Prop-
Bank (Palmer et al., 2005) and WordNet (Fell-
baum, 1998). The PM also contains for each pred-
icate features of the ontologies integrated in the
Multilingual Central Repository (Gonzalez-Agirre
et al., 2012) like SUMO (Niles and Pease, 2001),
Top Ontology (Alvez et al., 2008) or WordNet do-
mains (Bentivogli et al., 2004). The mappings be-
tween such knowledge bases allow to take advan-
tage from their individual strengths. For example,
the coverage of PropBank or the semantic rela-
tions among events and participants of FrameNet.
Moreover, it is also possible to automatically inte-
grate all knowledge connected to any of its com-
ponents, as in the case of ESO.

Both FrameNet and SUMO labels integrated in
ESO are used to connect ESO to the PM. For
example, the predicate sell.01 of PropBank be-
longs, according to their mappings in the PM, to
the frame Commerce_sell of FrameNet. Thus, this
predicate and its arguments would be mapped to
ESO as shows table 1. Moreover, the frame can
also be linked through the SUMO classes. For
instance, the predicate drain.01 of PropBank be-
longs to the frame Emptying that is not considered
in ESO. However, it also belongs to the class Re-
moving of SUMO and, in consequence, the map-
pings in table 2 can be obtained. In this way, ESO
is connected to 2235 predicates and 3445 different
roles of the PM.

PB-pred PB-arg FN-frame FN-fe ESO-class ESO-role

sell.01 argp Commerce_sell Seller Selling possession-owner_1
sell.01 argy Commerce_sell Goods Selling possession-theme
sell.01 argo Commerce_sell Buyer Selling possession-owner_2

Table 1: Mapping between PropBank and ESO
through FN.



PB-pred PB-arg SUMO-class FN-fe ESO-class ESO-role
drain.01 argg Removing Theme Removing translocation-theme
drain.01 argy Removing Source Removing translocation-source

Table 2: Mapping between PropBank and ESO
through SUMO.

S Current Output of the NWR system

PredicateMatrix version 1.1 integrating the ESO
information is now used by the SRL module of
NewsReader. This means that any possible map-
ping of a word to an ESO class, either through
WordNet, FrameNet or SUMO is added as an ex-
ternal reference to a predicate. The same applies
to the roles that are associated with the predi-
cate. For the following sentence “Council Pres-
ident Bob Reiss directed Boran to hire Lizzano
and fire Shook”,® NewsReader will generate SRL
structures for the predicate hire and involving Bo-
ran and Lizzano as shown in table 3. The SRL
structure shows both the corresponding FrameNet
frames and elements as the ESO classes and roles
to which they are mapped.

nwr:namedGraph47P9-DCM0-0092-K267 . xml
#prd4lrl98assertionl {
nwr:47P9-DCM0-0092-K267.xml#employment
a nwr:inEmployment;
nwr:JoiningAnOrganization@Remployment-employer
nwr:47P9-DCM0-0092-K267.xml#Walter_ Boran ;
nwr:JoiningAnOrganization@employment-employee
nwr:47P9-DCM0-0092-K267 .xml#Lizzano> ;
time:hasBeg
nwrtime:200211.}

Here we state that there is an instance of a static
situation of the type nwr:inEmployment that in-
volves Walter Boran as employer and Lizzano as
employee and that it begun at time nwr:200211.

Since collections of triples are grouped as
named graphs, we can express properties of these
collections through other triples. This is used
within the project to indicate the provenance of
the triples. In this case, we state that the former
graph with the URI nwr:namedGraph47P9-
DCMO0-0092-K267.xml#prd1rl98 is attributed
to the author and publisher of the news ar-
ticle, whereas the derived graph with the
URI nwr:namedGraph47P9-DCMO0-0092-
K267.xml#pr41rl98assertionl is attributed to
the ontology and a version of the reasoner that has

been applied.

Expression FrameNet ESO

hire fn:Hiring nwr:JoiningAnOrganization

Boran fn:Hiring@Employer

Lizzano fn:Hiring@Employee nwr:JoiningAnOrganization @employment-employee
Table 3: SRL output using the PredicateMatrix
mappings

From the SRL structures and various other annota-
tions generated in NewsReader, we create an RDF
representation of the situation as a named graph
including all the stated triples with unique URIs
for instances of events and entities:

nwr :namedGraph47P9-DCM0-0092-K267 .xm1l
#prd4lrl98 {
nwr:47P9-DCM0-0092-K267 .xml#hireEvent
a nwr:JoiningAnOrganization;

nwr:JoiningAnOrganization@employment-employer

nwr:47P9-DCM0-0092-K267.xml#Walter_Boran ;
nwr:JoiningAnOrganization@employment-employee

nwr:47P9-DCM0-0092-K267 .xml#Lizzano> ;
sem:hasTime

nwrtime:200211.}

We thus state that the event is an instance of
the class nwr:JoiningAndOrganization, what the
ESO role relations are with the entities and what
the time was of the event. The time URI is an
instance represented in normalized form accord-
ing to owl-time. In this example, it points to the
month November 2002. Given this named graph,
ESO can be used to derive static situations by trig-
gering the rules. This will generate the following
graph:

$2003/01/15/47P9-DCMO0-0092-K267.xml

nwr:JoiningAnOrganization@employment-employeryyy v : namedGraph4 7P9-DCMO-0092-K267 . xml#pr41r198

prov:attributedTo

nwr:47P9-DCM0-0092-K267 .xml1#William_J Ford ,

http://www.mcall.com;

nwr:namedGraph47P9-DCM0-0092-K267 .xml#
pr4l,rl98assertionl
prov:attributedTo

nwr:ontology/eso ,nwr:reasoner/versionl;

We are processing over a million of news arti-
cles on the automotive industry. We took the news
published in 2003 for estimating the coverage of
ESO with respect to the predicates and roles de-
tected.

Nr. Files 137,947 Freqg/file
predicates 9,186,927 66.6
roles 20,095,946 145.7
fn frames 8,943,414 64.8
fn elements | 16,612,989 120.4
ESO types 2,112,609 15.3
ESO roles 2,163,377 15.7

Table 4: Ratios of predicates, roles, frames, frame
elements and eso mappings, for 137,947 articles
published in 2003

On average, there are about 66 predicates and
145 roles per news article. If we compare this
with the average FrameNet frames and elements,
we see that the proportion are 97.35% for frames
versus predicates and 82.67% for elements versus
roles. If we consider the ESO types and roles, we



see that these proportions are 23.00% and 10.77%
respectively. Obviously, ESO was developed for a
small set of concepts and roles only so we cannot
expect full coverage.

6 Conclusion and Future Work

In this paper, we presented the Event and Situation
Ontology for inferencing on event data automati-
cally extracted from large streams of news. The
ontology was designed to capture implications of
events with respect to a selected set of properties
only. It thus does not provide a complete definition
of events and situations.

We are currently processing over a million of
news articles on the automotive industry, where
the ESO mapping are inserted in the SRL layers.
The output will be converted to RDF, after which
we will apply reasoning to derive new statements.
The output will be evaluated through inspecting
samples, against benchmark data that is being de-
veloped and through end-user tasks on the data
sets.

Furthermore, we are planning to extend and im-
prove the mappings across FrameNet, WordNet
and ESO as well as extending ESO to other prop-
erties, such as numerical and scalar values.

Acknowledgments

The research for this paper was supported by the
European Union’s 7th Framework Programme via
the NewsReader Project (ICT-316404).

References

J. Alvez, J. Atserias, J. Carrera, S. Climent, A. Oliver,
and G. Rigau. 2008. Consistent annotation of eu-

rowordnet with the top concept ontology. In Pro-
ceedings of GWC’08.

C.F Baker, C.J. Fillmore, and J.B. Lowe. 1998.
The berkeley framenet project. In Proceedings
COLING-ACL, ACL ’98, Montreal, Canada.

L. Bentivogli, PForner, B. Magnini, and E. Pianta.
2004. Revising the wordnet domains hierarchy:
semantics, coverage and balancing. In Proceed-
ings of the Workshop on Multilingual Linguistic
Ressources. Association for Computational Linguis-
tics.

A. Bjorkelund, L. Hafdell, and P. Nugues. 2009. Mul-
tilingual semantic role labeling. In Proceedings of
CoNLL-2009, Boulder, CO, USA.

D. Das, N. Schneider, D. Chen, and N.A. Smith. 2010.
Probabilistic frame-semantic parsing. In Human

Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, HLT ’10.

M. Lopez de Lacalle, E. Laparra, and G. Rigau. 2014.
First steps towards a predicate matrix. In Proceed-
ings of GWC 2014, Tartu, Estonia.

Christiane Fellbaum. 1998. WordNet: an electronic
lexical database. MIT Press.

A. Gonzalez-Agirre, E. Laparra, and G. Rigau. 2012.
Multilingual central repository version 3.0. In
LREC, pages 2525-2529.

A. Hicks. 2009. Domain extension of the central ontol-
ogy - final. Deliverable 8.3, KYOTO-ICT 211423.

S. Im and J. Pustejovsky. 2009. Annotating event im-
plicatures for textual inference tasks. In Proceed-
ings of the 5th International Conference on Genera-
tive Approaches to the Lexicon.

S. Im and J. Pustejovsky. 2010. Annotating lexically
entailed subevents for textual inference tasks. In
Proceedings of FLAIRS-23, Daytona Beach, USA.

K. Kipper, H. Trang Dang, and M. Palmer. 2000.
Class-based construction of a verb lexicon. In Sev-
enteenth National Conference on Artificial Intelli-
gence, AAAI-2000.

M.Palmer, D. Gildea, and P. Kingsbury. 2005. The
proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71-106.

I. Niles and A. Pease. 2001. Towards a standard up-
per ontology. In Proceedings of FOIS-Volume 2001.
ACM.

Martha Palmer. 2009. Semlink: Linking propbank,
verbnet and framenet. In Proceedings of the Gener-
ative Lexicon Conference, pages 9—15.

J. Ruppenhofer, M. Ellsworth, M. Petruck, C.R. John-
son, and J. Scheffczyk. 2006. FrameNet II: Ex-
tended Theory and Practice. International Com-
puter Science Institute, Berkeley, California.

J. Scheffczyk, A. Pease, and M. Ellsworth. 2006.
Linking framenet to the suggested upper merged on-
tology. In Proceedings of FOIS 2006.

M. van Erp, R. Segers, P. Vossen, A. Fokkens,
M. Rospocher, and R. Agerri. 2014. D5.2.1 domain
model for financial and economic events, version 1.
Deliverable D5.2.1, NewsReader-ICT316404.



