
 1

Web Search:

Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre …
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es

 2

Basic Techniques
for Web Search

 Review of applications
 Basic Techniques in detail:

 Boolean search
 Vocabularies, dictionaries, index
 Scoring, complete system, evaluation
 Web search

 Semantic search

Basic assumptions of Information
Retrieval

 Collection: Fixed set of documents
 Goal: Retrieve documents with information that is

relevant to the user’s information need and helps the
user complete a task

3

Sec. 1.1

The classic search model

Corpus

TASK

 Info Need

Query

 Verbal
form

Results

SEARCH
ENGINE

Query
Refinement

Get rid of mice in a
politically correct way

Info about removing mice
without killing them

 How do I trap mice alive?

mouse trap

Misconception?

Mistranslation?

Misformulation?

How good are the retrieved
docs?

 Precision : Fraction of retrieved docs that
are relevant to user’s information need
 Recall : Fraction of relevant docs in
collection that are retrieved
 More precise definitions and
measurements to follow in later lectures

5

Sec. 1.1

Information retrieval in 1680
Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

One could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines containing
Calpurnia?

Why is that not the answer?
 Slow (for large corpora)
 NOT Calpurnia is non-trivial
 Other operations (e.g., find the word Romans near

countrymen) not feasible
 Ranked retrieval (best documents to return)

6

Sec. 1.1

Term-document incidence

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains
word, 0 otherwise

Brutus AND Caesar BUT NOT
Calpurnia

Sec. 1.1

Incidence vectors

So we have a 0/1 vector for each term.

To answer query: take the vectors for
Brutus, Caesar and Calpurnia
(complemented)  bitwise AND.

110100 AND 110111 AND 101111 = 100100.

8

Sec. 1.1

Answers to query

Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

 When Antony found Julius Caesar dead,

 He cried almost to roaring; and he wept

 When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i' the

 Capitol; Brutus killed me.

9

Sec. 1.1

Bigger collections

 Consider N = 1 million documents, each with
about 1000 words.

 Avg 6 bytes/word including spaces/punctuation
 6GB of data in the documents.

 Say there are M = 500K distinct terms among
these.

10

Sec. 1.1

Can’t build the matrix

 500K x 1M matrix has half-a-trillion 0’s and 1’s.
 But it has no more than one billion 1’s.

 Matrix is extremely sparse.
 What’s a better representation?

 We only record the 1 positions.

11

Why?

Sec. 1.1

Inverted index
For each term t, we must store a list of all documents
that contain t.

 Identify each by a docID, a document serial number

Can we used fixed-size arrays for this?

12

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

What happens if the word Caesar is
added to document 14?

Sec. 1.2

174

54 101

Inverted index
We need variable-size postings lists

 On disk, a continuous run of postings is normal and best
 In memory, can use linked lists or variable length arrays

 Some tradeoffs in size/ease of insertion

13

Dictionary Postings

Sorted by docID (more later on why).

PostingPosting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Tokenizer

Token stream. Friends Romans Countrymen

Inverted index construction

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Sec. 1.2

Indexer steps: Token sequence

Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

Indexer steps: Sort
Sort by terms

 And then docID

Core indexing step

Sec. 1.2

Indexer steps: Dictionary &
Postings

Multiple term entries in
a single document are
merged.
Split into Dictionary and
Postings
Doc. frequency
information is added.

Why frequency?
Will discuss later.

Sec. 1.2

Where do we pay in storage?

18Pointers

Terms
and

counts

Sec. 1.2

Lists of
docIDs

Query processing: AND

Consider processing the query:
Brutus AND Caesar
 Locate Brutus in the Dictionary;

 Retrieve its postings.

 Locate Caesar in the Dictionary;
 Retrieve its postings.

 “Merge” the two postings:

19

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

20

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar2 8

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

Sec. 1.3

Intersecting two postings lists
(a “merge” algorithm)

21

Boolean queries: Exact match
 The Boolean retrieval model is being able to ask a query

that is a Boolean expression:
 Boolean Queries are queries using AND, OR and NOT

to join query terms
 Views each document as a set of words
 Is precise: document matches condition or not.

 Perhaps the simplest model to build an IR system on
 Primary commercial retrieval tool for 3 decades!
 Many search systems you still use are Boolean:

 Email, library catalog, Mac OS X Spotlight

22

Sec. 1.3

Example: WestLaw http://www.westlaw.com/

 Largest commercial (paying subscribers) legal search
service (started 1975; ranking added 1992)
 Tens of terabytes of data; 700,000 users
 Majority of users still use boolean queries
 Example query:

 What is the statute of limitations in cases involving
the federal tort claims act?

 LIMIT! /3 STATUTE ACTION /S FEDERAL /2
TORT /3 CLAIM
 /3 = within 3 words, /S = in same sentence

23

Sec. 1.4

Example: WestLaw http://www.westlaw.com/

 Another example query:
 Requirements for disabled people to be able to access

a workplace
 disabl! /p access! /s work-site work-place (employment /

3 place)
 Note that SPACE is disjunction, not conjunction!
 Long, precise queries; proximity operators; incrementally

developed; not like web search
 Many professional searchers still like Boolean search

 You know exactly what you are getting
 But that doesn’t mean it actually works better….

Sec. 1.4

Boolean queries:
More general merges

 Exercise: Adapt the merge for the queries:

Brutus AND NOT Caesar

Brutus OR NOT Caesar

 Can we still run through the merge in time O(x+y)?
 What can we achieve?

25

Sec. 1.3

Merging

 What about an arbitrary Boolean formula?

(Brutus OR Caesar) AND NOT

(Antony OR Cleopatra)
 Can we always merge in “linear” time?

 Linear in what?
 Can we do better?

26

Sec. 1.3

Query optimization

 What is the best order for query processing?
 Consider a query that is an AND of n terms.
 For each of the n terms, get its postings, then AND
them together.

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Query: Brutus AND Calpurnia AND Caesar
27

Sec. 1.3

Query optimization example
Process in order of increasing freq:

 start with smallest set, then keep cutting further.

28

This is why we kept
document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

More general optimization

 e.g., (madding OR crowd) AND (ignoble OR strife)
 Get doc. freq.’s for all terms.
 Estimate the size of each OR by the sum of its doc. freq.’s
(conservative).
 Process in increasing order of OR sizes.

29

Sec. 1.3

Exercise

Recommend a query
processing order for

 Term Freq
 eyes 213312

 kaleidoscope 87009

 marmalade 107913

 skies 271658

 tangerine 46653

 trees 316812

30

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

What’s ahead in IR?
Beyond term search

 What about phrases?
 Stanford University

 Proximity: Find Gates NEAR Microsoft.
 Need index to capture position information in docs.

 Zones in documents: Find documents with (author =
Ullman) AND (text contains automata).

31

Evidence accumulation

 1 vs. 0 occurrence of a search term
 2 vs. 1 occurrence
 3 vs. 2 occurrences, etc.
 Usually more seems better ...

 Need term frequency information in docs

32

Ranking search results

 Boolean queries give inclusion or exclusion of docs.
 Often we want to rank/group results

 Need to measure proximity from query to each doc.
 Need to decide whether docs presented to user are

singletons, or a group of docs covering various aspects
of the query.

33

 34

Basic Techniques
for Web Search

• Review of applications

• Basic Techniques in detail:
– Boolean search

– Vocabularies, dictionaries, index

– Scoring, complete system, evaluation

– Web search

• Semantic search

 35

Web Search:

Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre …
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es

