
Web Search:

Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre …
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es

 2

Basic Techniques
for Web Search

 Review of applications
 Basic Techniques in detail:

 Boolean search
 Vocabularies, dictionaries
 Indexing
 Scoring
 complete system, evaluation
 Web search

 Semantic search

3

Recap of the previous lectures
 Basic inverted indexes:

 Structure: Dictionary and Postings

 Key step in construction: Sorting
 Boolean query processing

 Intersection by linear time “merging”
 Simple optimizations

Ch. 1

4

Terms and positions (ch. 2)

 Elaborate basic indexing
 Preprocessing to form the term vocabulary

 Documents
 Tokenization
 What terms do we put in the index?

 Postings
 Positional postings and phrase queries

5

Recall the basic indexing
pipeline

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

6

Parsing a document

 What format is it in?
● pdf/word/excel/html? … https://tika.apache.org

● What language is it in?

 language identification
 What character set is in use?

 UTF8, ...

 Each of these is a classification problem.
 But these tasks are often done heuristically …

Sec. 2.1

https://tika.apache.org/

7

Complications: Format/language
 Documents being indexed can include docs from many

different languages
 A single index may have to contain terms of several

languages.
 Sometimes a document or its components can contain

multiple languages/formats
 French email with a German pdf attachment.

 What is a unit document?
 A file?
 An email? (Perhaps one of many in an mbox.)
 An email with 5 attachments?
 A group of files (PPT or LaTeX as HTML pages)

Sec. 2.1

8

Vocabularies, dictionaries

 Tokens and Terms
 Phrase Queries and Positional Indexes
 Dictionary data structures
 “Tolerant” retrieval

Sec. 2.2.1

9

Tokenization
● Input: “Friends, Romans and Countrymen”
● Output: Tokens

● Friends
● Romans
● Countrymen

● A token is an instance of a sequence of characters
● Each such token is now a candidate for an index

entry, after further processing
● Described below

● But what are valid tokens to emit?

Sec. 2.2.1

10

Token
● Input: “Friends, Romans and Countrymen”
● Output: Tokens

● Friends
● Romans
● Countrymen

● A token is an instance of a sequence of characters
● Each such token is now a candidate for an index

entry, after further processing
● Described below

● But what are valid tokens to emit?

Sec. 2.2.1

11

Tokenization
● Issues in tokenization:

● Finland’s capital

 Finland? Finlands? Finland’s?
● Hewlett-Packard Hewlett and Packard as

two tokens?
– state-of-the-art: break up hyphenated sequence.
– co-education
– lowercase, lower-case, lower case ?
– It can be effective to get the user to put in possible hyphens

● San Francisco: one token or two?
– How do you decide it is one token?

Sec. 2.2.1

12

Numbers
● 3/20/91 Mar. 12, 1991 20/3/91
● 55 B.C.
● B-52
● My PGP key is 324a3df234cb23e
● (800) 234-2333

● Often have embedded spaces
● Older IR systems may not index numbers

– But often very useful: think about things like looking up
error codes/stacktraces on the web

– (One answer is using n-grams)
● Will often index “meta-data” separately

– Creation date, format, etc.

Sec. 2.2.1

13

Tokenization: language issues
● French

● L'ensemble one token or two?
– L ? L’ ? Le ?
– Want l’ensemble to match with un ensemble

● Until at least 2003, it didn’t on Google
– Internationalization!

● German noun compounds are not segmented
● Lebensversicherungsgesellschaftsangestellter
● ‘life insurance company employee’
● German retrieval systems benefit greatly from a compound splitter

module
● Can give a 15% performance boost for German

Sec. 2.2.1

14

Tokenization: language issues
● Chinese and Japanese have no spaces between words:

● 莎拉波娃现在居住在美国现南部的佛现里达。
● Not always guaranteed a unique tokenization

● Further complicated in Japanese, with multiple alphabets
intermingled

● Dates/amounts in multiple formats

フォーチュン 500社は情報不足のため時間あた $500K(約 6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Sec. 2.2.1

15

Tokenization: language issues
● Arabic (or Hebrew) is basically written right to

left, but with certain items like numbers written
left to right

● Words are separated, but letter forms within a
word form complex ligatures

● ← → ← → ← start
● ‘Algeria achieved its independence in 1962 after

132 years of French occupation.’
● With Unicode, the surface presentation is complex, but the

stored form is straightforward

Sec. 2.2.1

16

Stop words

● With a stop list, you exclude from the dictionary
entirely the commonest words. Intuition:

● They have little semantic content: the, a, and, to, be
● There are a lot of them: ~30% of postings for top 30 words

● But the trend is away from doing this:
● Good compression techniques means the space for including

stopwords in a system is very small
● Good query optimization techniques mean you pay little at query time

for including stop words.
● You need them for:

– Phrase queries: “King of Denmark”
– Various song titles, etc.: “Let it be”, “To be or not to be”
– “Relational” queries: “flights to London”

Sec. 2.2.2

17

Normalization to terms
● We need to “normalize” words in indexed text as

well as query words into the same form
● We want to match U.S.A. and USA

● Result is terms: a term is a (normalized) word
type, which is an entry in our IR system dictionary

● We most commonly implicitly define equivalence
classes of terms by, e.g.,
● deleting periods to form a term

– U.S.A., USA => USA

● deleting hyphens to form a term
– anti-discriminatory, antidiscriminatory => antidiscriminatory

Sec. 2.2.3

18

Normalization: other languages
● Accents: e.g., French résumé vs. resume.
● Umlauts: e.g., German: Tuebingen vs. Tübingen

● Should be equivalent
● Most important criterion:

● How are your users like to write their queries for these
words?

● Even in languages that standardly have accents,
users often may not type them
● Often best to normalize to a de-accented term

– Tuebingen, Tübingen, Tubingen => Tubingen

Sec. 2.2.3

19

Normalization: other languages
● Normalization of things like date forms

● 7月 30日 vs. 7/30
● Japanese use of kana vs. Chinese

characters

● Tokenization and normalization may depend on the
language and so is intertwined with language
detection

● Crucial: Need to “normalize” indexed text as well
as query terms into the same form

Morgen will ich in MIT …
Is this

German “mit”?

Sec. 2.2.3

20

Case folding
● Reduce all letters to lower case

● exception: upper case in mid-sentence?
– e.g., General Motors
– Fed vs. fed
– SAIL vs. sail

● Often best to lower case everything,
since users will use lowercase
regardless of ‘correct’ capitalization…

● Google example:
● Query C.A.T.
● #1 result is for “cat” (well, Lolcats) not

Caterpillar Inc.

Sec. 2.2.3

21

Lemmatization
● Reduce inflectional/variant forms to base

form
● E.g.,

● am, are, is be
● car, cars, car's, cars' car

● the boy's cars are different colors the
boy car be different color

● Lemmatization implies doing “proper”
reduction to dictionary headword form

Sec. 2.2.4

22

Stemming
● Reduce terms to their “roots” before

indexing
● “Stemming” suggest crude affix chopping

● language dependent
● e.g., automate(s), automatic, automation

all reduced to automat.
for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Sec. 2.2.4

23

Porter’s algorithm
● Commonest algorithm for stemming

English
● Results suggest it’s at least as good as other

stemming options
● Conventions + 5 phases of reductions

● phases applied sequentially
● each phase consists of a set of commands
● sample convention: Of the rules in a

compound command, select the one that
applies to the longest suffix.

Sec. 2.2.4

24

Typical rules in Porter
● sses ss
● ies i
● ational ate
● tional tion

● Weight of word sensitive rules
● (m>1) EMENT →

– replacement → replac
– cement → cement

Sec. 2.2.4

25

Other stemmers
● Other stemmers exist, e.g., Lovins stemmer

● http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

● Single-pass, longest suffix removal (about 250 rules)

● Full morphological analysis – at most modest
benefits for retrieval

● Do stemming and other normalizations help?
● English: very mixed results. Helps recall for some queries but

harms precision on others
– E.g., operative (dentistry) ⇒ oper

● Definitely useful for Spanish, German, Finnish, Basque…
– 30% performance gains for Finnish and Basque!

Sec. 2.2.4

26

Language-specificity
● Many of the above features embody

transformations that are
● Language-specific and
● Often, application-specific

● These are “plug-in” addenda to the
indexing process

● Both open source and commercial
plug-ins are available for handling these

Sec. 2.2.4

27

Vocabularies, dictionaries

 Tokens and Terms
 Phrase Queries and Positional Indexes
 Dictionary data structures
 “Tolerant” retrieval

Sec. 2.2.1

28

Phrase queries
● Want to be able to answer queries such as

“stanford university” – as a phrase
● Thus the sentence “I went to university at

Stanford” is not a match.
● The concept of phrase queries has proven easily

understood by users; one of the few “advanced
search” ideas that works

● Many more queries are implicit phrase queries
● For this, it no longer suffices to store only

 <term : docs> entries

Sec. 2.4

29

A first attempt: Biword indexes
● Index every consecutive pair of terms in the

text as a phrase
● For example the text “Friends, Romans,

Countrymen” would generate the biwords
● friends romans
● romans countrymen

● Each of these biwords is now a dictionary
term

● Two-word phrase query-processing is now
immediate.

Sec. 2.4.1

30

Longer phrase queries
● Longer phrases:
● stanford university palo alto can be broken

into the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain
the phrase.

Can have false positives!

Sec. 2.4.1

31

Issues for biword indexes
● False positives, as noted before
● Index blowup due to bigger dictionary

● Infeasible for more than biwords, big even for
them

● Biword indexes are not the standard
solution (for all biwords) but can be part of
a compound strategy

Sec. 2.4.1

32

Solution 2: Positional indexes
● In the postings, store, for each term the

position(s) in which tokens of it appear:

<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Sec. 2.4.2

33

Positional index example

● For phrase queries, we use a merge
algorithm recursively at the document level

● But we now need to deal with more than
just equality

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Sec. 2.4.2

34

Processing a phrase query
● Extract inverted index entries for each distinct

term: to, be, or, not.
● Merge their doc:position lists to enumerate all

positions with “to be or not to be”.
● to:

– 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

● be:
– 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

● Same general method for proximity searches

Sec. 2.4.2

35

Proximity queries
● LIMIT! /3 STATUTE /3 FEDERAL /2 TORT

● Again, here, /k means “within k words of”.
● Clearly, positional indexes can be used for

such queries; biword indexes cannot.

Sec. 2.4.2

36

Positional index size
● You can compress position values/offsets
● Nevertheless, a positional index expands

postings storage substantially
● Nevertheless, a positional index is now

standardly used because of the power
and usefulness of phrase and proximity
queries … whether used explicitly or
implicitly in a ranking retrieval system.

Sec. 2.4.2

37

Positional index size
● Need an entry for each occurrence, not just once per

document
● Index size depends on average document size

● Average web page has <1000 terms
● SEC filings, books, even some epic poems … easily

100,000 terms
● Consider a term with frequency 0.1%

Why?

1001100,000

111000

Positional postingsPostingsDocument size

Sec. 2.4.2

38

Rules of thumb
● A positional index is 2–4 as large as a

non-positional index
● Positional index size 35–50% of volume

of original text
● Caveat: all of this holds for “English-like”

languages

Sec. 2.4.2

39

Vocabularies, dictionaries

 Tokens and Terms
 Phrase Queries and Positional Indexes
 Dictionary data structures
 “Tolerant” retrieval

Sec. 2.2.1

40

Dictionary data structures for
inverted indexes

● The dictionary data structure stores the
term vocabulary, document frequency,
pointers to each postings list … in what
data structure?

Sec. 3.1

41

A naïve dictionary
● An array of struct:

 char[20] int Postings *

 20 bytes 4/8 bytes 4/8 bytes
● How do we store a dictionary in memory efficiently?
● How do we quickly look up elements at query time?

Sec. 3.1

42

Dictionary data structures
● Two main choices:

● Hash table
● Tree

● Some IR systems use hashes, some
trees

Sec. 3.1

43

Hashes
● Each vocabulary term is hashed to an integer

● (We assume you’ve seen hashtables before)
● Pros:

● Lookup is faster than for a tree: O(1)
● Cons:

● No easy way to find minor variants:
– judgment/judgement

● No prefix search [tolerant retrieval]
● If vocabulary keeps growing, need to occasionally

do the expensive operation of rehashing everything

Sec. 3.1

44

Root
a-m n-z

a-hu hy-m n-sh si-z

aa
rd
va
rk

hu
yg
en
s

si
ck
le

zy
go
t

Tree: binary tree

Sec. 3.1

45

Tree: B-tree

 Definition: Every internal nodel has a number
of children in the interval [a,b] where a, b are
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z

Sec. 3.1

46

Trees
● Simplest: binary tree
● More usual: B-trees
● Trees require a standard ordering of characters and hence

strings … but we standardly have one
● Pros:

● Solves the prefix problem (terms starting with hyp)
● Cons:

● Slower: O(log M) [and this requires balanced tree]
● Rebalancing binary trees is expensive

– But B-trees mitigate the rebalancing problem

Sec. 3.1

47

Vocabularies, dictionaries

 Tokens and Terms
 Phrase Queries and Positional Indexes
 Dictionary data structures
 “Tolerant” retrieval

 Wildcard queries
 Spelling correction
 Soundex

Sec. 2.2.1

48

Vocabularies, dictionaries

 Tokens and Terms
 Phrase Queries and Positional Indexes
 Dictionary data structures
 “Tolerant” retrieval

 Wildcard queries
 Spelling correction
 Soundex

Sec. 2.2.1

49

Wild-card queries: *

● mon*: find all docs containing any word
beginning “mon”.

● Easy with binary tree (or B-tree) lexicon:
retrieve all words in range: mon ≤ w < moo

● *mon: find words ending in “mon”: harder
● Maintain an additional B-tree for terms

backwards.

Can retrieve all words in range: nom ≤ w < non.
Exercise: from this, how can we enumerate all terms
meeting the wild-card query pro*cent ?

Sec. 3.2

50

Query processing
● At this point, we have an enumeration of

all terms in the dictionary that match the
wild-card query.

● We still have to look up the postings for
each enumerated term.

● E.g., consider the query:

se*ate AND fil*er

This may result in the execution of many
Boolean AND queries.

Sec. 3.2

51

Processing wild-card queries
● As before, we must execute a Boolean query for each

enumerated, filtered term.
● Wild-cards can result in expensive query execution

(very large disjunctions…)
● pyth* AND prog*

● If you encourage “laziness” people will respond!

● Which web search engines allow wildcard queries?

Search

Type your search terms, use ‘*’ if you need to.
E.g., Alex* will match Alexander.

Sec. 3.2.2

52

Vocabularies, dictionaries

 Tokens and Terms
 Phrase Queries and Positional Indexes
 Dictionary data structures
 “Tolerant” retrieval

 Wildcard queries
 Spelling correction
 Soundex

Sec. 2.2.1

53

Spell correction
● Two principal uses

● Correcting document(s) being indexed
● Correcting user queries to retrieve “right” answers

● Two main flavors:
● Isolated word

– Check each word on its own for misspelling
– Will not catch typos resulting in correctly spelled words
– e.g., from form

● Context-sensitive
– Look at surrounding words,
– e.g., I flew form Heathrow to Narita.

Sec. 3.3

54

Context-sensitive spell
correction

● Text: I flew from Heathrow to Narita.
● Consider the phrase query “flew form

Heathrow”
● We’d like to respond

Did you mean “flew from Heathrow”?

because no docs matched the query phrase.

Sec. 3.3.5

55

Context-sensitive correction
● Need surrounding context to catch this.
● First idea: retrieve dictionary terms close (in

weighted edit distance) to each query term
● Now try all possible resulting phrases with

one word “fixed” at a time
● flew from heathrow
● fled form heathrow
● flea form heathrow

● Hit-based spelling correction: Suggest
the alternative that has lots of hits.

Sec. 3.3.5

56

General issues in spell
correction

● We enumerate multiple alternatives for “Did
you mean?”

● Need to figure out which to present to the user
● Use heuristics

● The alternative hitting most docs
● Query log analysis + tweaking

– For especially popular, topical queries

● Spell-correction is computationally expensive
● Avoid running routinely on every query?
● Run only on queries that matched few docs

Sec. 3.3.5

57

Vocabularies, dictionaries

 Tokens and Terms
 Phrase Queries and Positional Indexes
 Dictionary data structures
 “Tolerant” retrieval

 Wildcard queries
 Spelling correction
 Soundex

Sec. 2.2.1

58

Soundex
● Class of heuristics to expand a query into

phonetic equivalents
● Language specific – mainly for names
● E.g., chebyshev tchebycheff

● Invented for the U.S. census … in 1918

Sec. 3.4

59

Soundex – typical algorithm
● Turn every token to be indexed into a

4-character reduced form
● Do the same with query terms
● Build and search an index on the reduced

forms
● (when the query calls for a soundex match)

● http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Sec. 3.4

60

Soundex – typical algorithm
1. Retain the first letter of the word.
2. Change all occurrences of the following letters to

'0' (zero):
 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

3. Change letters to digits as follows:
 B, F, P, V 1
 C, G, J, K, Q, S, X, Z 2
 D,T 3
 L 4
 M, N 5
 R 6

Sec. 3.4

61

Soundex continued
1. Remove all pairs of consecutive digits.

2. Remove all zeros from the resulting string.

3. Pad the resulting string with trailing zeros and
return the first four positions, which will be of
the form <uppercase letter> <digit> <digit>
<digit>.

E.g., Herman becomes H655.

Will hermann generate the same code?

Sec. 3.4

62

Soundex
● Soundex is the classic algorithm, provided by

most databases (Oracle, Microsoft, …)
● How useful is soundex?
● Not very – for information retrieval
● Okay for “high recall” tasks (e.g., Interpol),

though biased to names of certain
nationalities

● Zobel and Dart (1996) show that other
algorithms for phonetic matching perform
much better in the context of IR

Sec. 3.4

63

What queries can we process?
● We have

● Positional inverted index
● Wild-card index
● Spell-correction
● Soundex

● Queries such as

(SPELL(moriset) /3 toron*to) OR
SOUNDEX(chaikofski)

Web Search:

Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre …
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es

