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Basic Techniques 
for Web Search

 Review of applications 
 Basic Techniques in detail:

 Boolean search
 Vocabularies, dictionaries
 Indexing
 Scoring
 complete system, evaluation
 Web search

 Semantic search
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Indexing

 Index construction
● How do we construct an index?
● What strategies can we use with limited main memory?

Sec. 2.2.1



4

Hardware basics
● Many design decisions in information 

retrieval are based on the characteristics 
of hardware

● We begin by reviewing hardware basics

Sec. 4.1
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Hardware basics
● Access to data in memory is much faster than 

access to data on disk.
● Disk seeks: No data is transferred from disk 

while the disk head is being positioned.
● Therefore: Transferring one large chunk of 

data from disk to memory is faster than 
transferring many small chunks.

● Disk I/O is block-based: Reading and writing of 
entire blocks (as opposed to smaller chunks).

● Block sizes: 8KB to 256 KB.

Sec. 4.1
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Hardware basics
● Servers used in IR systems now typically 

have several GB of main memory, 
sometimes tens of GB. 

● Available disk space is several (2–3) 
orders of magnitude larger.

● Fault tolerance is very expensive: It’s 
much cheaper to use many regular 
machines rather than one fault tolerant 
machine.

Sec. 4.1
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Hardware assumptions
● symbol statistic value
● s average seek time 5 ms = 5 x 10−3 s
● b transfer time per byte 0.02 μs = 2 x 10−8 s
●       processor’s clock rate 109 s−1

● p low-level operation 0.01 μs = 10−8 s

         (e.g., compare & swap a word)
●       size of main memory several GB
●       size of disk space  1 TB or more

Sec. 4.1
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A Reuters RCV1 document

Sec. 4.2
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Reuters RCV1 statistics
● symbol statistic value
● N documents  800,000
● L avg. # tokens per doc 200
● M terms (= word types) 400,000
●                 avg. # bytes per token 4.5

                   (incl. spaces/punct.)
●                 avg. # bytes per token 6

            (without spaces/punct.)
●                 avg. # bytes per term 7.5
●  T               non-positional postings 100,000,000

6 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2
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● Documents are parsed to extract words and 
these are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall IIR 1 index construction
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

 Key step
● After all documents have 

been parsed, the inverted 
file is sorted by terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2
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Scaling index construction
● In-memory index construction does not 

scale.
● How can we construct an index for very 

large collections?
● Taking into account the hardware 

constraints we just learned about . . .
● Memory, disk, speed, etc.

Sec. 4.2
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Sort-based index construction
● As we build the index, we parse docs one at a time.

● While building the index, we cannot easily exploit 
compression tricks   (you can, but much more complex)

● The final postings for any term are incomplete until the end.
● At 12 bytes per non-positional postings entry (term, doc, 

freq), demands a lot of space for large collections.
● T = 100,000,000 in the case of RCV1

● So … we can do this in memory in 2009, but 
typical collections are much larger.  E.g. the New 
York Times provides an index of >150 years of 
newswire

● Thus: We need to store intermediate results on disk.

Sec. 4.2
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Use the same algorithm for 
disk?

● Can we use the same index construction 
algorithm for larger collections, but by 
using disk instead of memory?

● No: Sorting T = 100,000,000 records on 
disk is too slow – too many disk seeks.

● We need an external sorting algorithm.

Sec. 4.2
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Bottleneck
● Parse and build postings entries one doc 

at a time
● Now sort postings entries by term (then 

by doc within each term)
● Doing this with random disk seeks would 

be too slow – must sort T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?

Sec. 4.2
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BSBI: Blocked sort-based Indexing 
(Sorting with fewer disk seeks)

● 12-byte (4+4+4) records (term, doc, freq).
● These are generated as we parse docs.
● Must now sort 100M such 12-byte records by 

term.
● Define a Block ~ 10M such records

● Can easily fit a couple into memory.
● Will have 10 such blocks to start with.

● Basic idea of algorithm:
● Accumulate postings for each block, sort, write to disk.
● Then merge the blocks into one long sorted order.

Sec. 4.2
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Sec. 4.2
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Sorting 10 blocks of 10M 
records

● First, read each block and sort within: 
● Quicksort takes 2N ln N expected steps
● In our case 2 x (10M ln 10M) steps

● Exercise: estimate total time to read each Exercise: estimate total time to read each 
block from disk and and quicksort it.block from disk and and quicksort it.

● 10 times this estimate – gives us 10 sorted 
runs of 10M records each.

● Done straightforwardly, need 2 copies of data 
on disk
● But can optimize this

Sec. 4.2
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Sec. 4.2
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How to merge the sorted runs?
● Can do binary merges, with a merge tree of log210 = 4 

layers.
● During each layer, read into memory runs in blocks of 

10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2
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How to merge the sorted runs?
● But it is more efficient to do a n-way merge, where you 

are reading from all blocks simultaneously
● Providing you read decent-sized chunks of each block 

into memory and then write out a decent-sized output 
chunk, then you’re not killed by disk seeks

Sec. 4.2
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Distributed indexing
● For web-scale indexing (don’t try this at 

home!):
must use a distributed computing cluster

● Individual machines are fault-prone
● Can unpredictably slow down or fail

● How do we exploit such a pool of 
machines?

Sec. 4.4
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Google data centers
● Google data centers mainly contain commodity 

machines.
● Data centers are distributed around the world.
● Estimate: a total of 1 million servers, 3 million 

processors/cores (Gartner 2007)
● Estimate: Google installs 100,000 servers each 

quarter.
● Based on expenditures of 200–250 million dollars per 

year
● This would be 10% of the computing capacity of 

the world!?!

Sec. 4.4
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Distributed indexing
● Maintain a master machine directing the 

indexing job – considered “safe”.
● Break up indexing into sets of (parallel) 

tasks.
● Master machine assigns each task to an 

idle machine from a pool.

Sec. 4.4
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Parallel tasks
● We will use two sets of parallel tasks

● Parsers
● Inverters

● Break the input document collection into 
splits

● Each split is a subset of documents 
(corresponding to blocks in BSBI)

Sec. 4.4
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Parsers
● Master assigns a split to an idle parser 

machine
● Parser reads a document at a time and 

emits (term, doc) pairs
● Parser writes pairs into j partitions
● Each partition is for a range of terms’ first 

letters
● (e.g., a-f, g-p, q-z) – here j = 3.

● Now to complete the index inversion

Sec. 4.4
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Inverters
● An inverter collects all (term,doc) pairs (= 

postings) for one term-partition.
● Sorts and writes to postings lists

Sec. 4.4
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Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4
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MapReduce
● The index construction algorithm we just 

described is an instance of MapReduce.
● MapReduce (Dean and Ghemawat 2004) is a 

robust and conceptually simple framework for 
distributed computing …

● … without having to write code for the 
distribution part.

● They describe the Google indexing system 
(ca. 2002) as consisting of a number of 
phases, each implemented in MapReduce.

Sec. 4.4
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MapReduce
● Index construction was just one phase.
● Another phase: transforming a term-partitioned 

index into a document-partitioned index.
● Term-partitioned: one machine handles a subrange 

of terms
● Document-partitioned: one machine handles a 

subrange of documents
● As we discuss in the web part of the course) 

most search engines use a 
document-partitioned index … better load 
balancing, etc.

Sec. 4.4
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Schema for index construction 
in MapReduce

● Schema of map and reduce functions
● map: input → list(k, v)     reduce: (k,list(v)) → output
● Instantiation of the schema for index construction
● map: web collection → list(termID, docID)
● reduce: (<termID1, list(docID)>, <termID2, list(docID)>, 

…) → (postings list1, postings list2, …)
● Example for index construction
● map: d2 : C died. d1 : C came, C c’ed. → (<C, d2>, 

<died,d2>, <C,d1>, <came,d1>, <C,d1>, <c’ed, d1>
● reduce: (<C,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, 

<c’ed,(d1)>)  →  (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,
(d1:1)>, <c’ed,(d1:1)>)

Sec. 4.4



33

Dynamic indexing
● Up to now, we have assumed that 

collections are static.
● They rarely are: 

● Documents come in over time and need to be 
inserted.

● Documents are deleted and modified.
● This means that the dictionary and postings 

lists have to be modified:
● Postings updates for terms already in dictionary
● New terms added to dictionary

Sec. 4.5
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Simplest approach
● Maintain “big” main index
● New docs go into “small” auxiliary index
● Search across both, merge results
● Deletions

● Invalidation bit-vector for deleted docs
● Filter docs output on a search result by this 

invalidation bit-vector
● Periodically, re-index into one main index

Sec. 4.5
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Issues with main and auxiliary 
indexes

● Problem of frequent merges – you touch stuff a lot
● Poor performance during merge
● Actually:

● Merging of the auxiliary index into the main index is efficient if 
we keep a separate file for each postings list.

● Merge is the same as a simple append.
● But then we would need a lot of files – inefficient for O/S.

● Assumption for the rest of the lecture: The index is one 
big file.

● In reality: Use a scheme somewhere in between (e.g., 
split very large postings lists, collect postings lists of 
length 1 in one file etc.)

Sec. 4.5
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Further issues with multiple 
indexes

● Collection-wide statistics are hard to maintain
● E.g., when we spoke of spell-correction: which of 

several corrected alternatives do we present to 
the user?
● We said, pick the one with the most hits

● How do we maintain the top ones with multiple 
indexes and invalidation bit vectors?
● One possibility: ignore everything but the main index 

for such ordering
● Will see more such statistics used in results 

ranking

Sec. 4.5
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Dynamic indexing at search 
engines

● All the large search engines now do dynamic 
indexing

● Their indices have frequent incremental 
changes
● News items, blogs, new topical web pages

– Sarah Palin, …

● But (sometimes/typically) they also 
periodically reconstruct the index from scratch
● Query processing is then switched to the new 

index, and the old index is then deleted

Sec. 4.5
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Sec. 4.5
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