
Web Search:

Techniques, algorithms and Aplications

Basic Techniques 
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre … 
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es


  2

Basic Techniques 
for Web Search

 Review of applications 
 Basic Techniques in detail:

 Boolean search
 Vocabularies, dictionaries
 Indexing
 Scoring
 complete system, evaluation
 Web search

 Semantic search



3

Indexing

 Index construction
● How do we construct an index?
● What strategies can we use with limited main memory?

Sec. 2.2.1



4

Hardware basics
● Many design decisions in information 

retrieval are based on the characteristics 
of hardware

● We begin by reviewing hardware basics

Sec. 4.1



5

Hardware basics
● Access to data in memory is much faster than 

access to data on disk.
● Disk seeks: No data is transferred from disk 

while the disk head is being positioned.
● Therefore: Transferring one large chunk of 

data from disk to memory is faster than 
transferring many small chunks.

● Disk I/O is block-based: Reading and writing of 
entire blocks (as opposed to smaller chunks).

● Block sizes: 8KB to 256 KB.

Sec. 4.1



6

Hardware basics
● Servers used in IR systems now typically 

have several GB of main memory, 
sometimes tens of GB. 

● Available disk space is several (2–3) 
orders of magnitude larger.

● Fault tolerance is very expensive: It’s 
much cheaper to use many regular 
machines rather than one fault tolerant 
machine.

Sec. 4.1



7

Hardware assumptions
● symbol statistic value
● s average seek time 5 ms = 5 x 10−3 s
● b transfer time per byte 0.02 μs = 2 x 10−8 s
●       processor’s clock rate 109 s−1

● p low-level operation 0.01 μs = 10−8 s

         (e.g., compare & swap a word)
●       size of main memory several GB
●       size of disk space  1 TB or more

Sec. 4.1



9

A Reuters RCV1 document

Sec. 4.2



10

Reuters RCV1 statistics
● symbol statistic value
● N documents  800,000
● L avg. # tokens per doc 200
● M terms (= word types) 400,000
●                 avg. # bytes per token 4.5

                   (incl. spaces/punct.)
●                 avg. # bytes per token 6

            (without spaces/punct.)
●                 avg. # bytes per term 7.5
●  T               non-positional postings 100,000,000

6 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2



11

● Documents are parsed to extract words and 
these are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall IIR 1 index construction
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2



12

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

 Key step
● After all documents have 

been parsed, the inverted 
file is sorted by terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2



13

Scaling index construction
● In-memory index construction does not 

scale.
● How can we construct an index for very 

large collections?
● Taking into account the hardware 

constraints we just learned about . . .
● Memory, disk, speed, etc.

Sec. 4.2



14

Sort-based index construction
● As we build the index, we parse docs one at a time.

● While building the index, we cannot easily exploit 
compression tricks   (you can, but much more complex)

● The final postings for any term are incomplete until the end.
● At 12 bytes per non-positional postings entry (term, doc, 

freq), demands a lot of space for large collections.
● T = 100,000,000 in the case of RCV1

● So … we can do this in memory in 2009, but 
typical collections are much larger.  E.g. the New 
York Times provides an index of >150 years of 
newswire

● Thus: We need to store intermediate results on disk.

Sec. 4.2



15

Use the same algorithm for 
disk?

● Can we use the same index construction 
algorithm for larger collections, but by 
using disk instead of memory?

● No: Sorting T = 100,000,000 records on 
disk is too slow – too many disk seeks.

● We need an external sorting algorithm.

Sec. 4.2



16

Bottleneck
● Parse and build postings entries one doc 

at a time
● Now sort postings entries by term (then 

by doc within each term)
● Doing this with random disk seeks would 

be too slow – must sort T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?

Sec. 4.2



17

BSBI: Blocked sort-based Indexing 
(Sorting with fewer disk seeks)

● 12-byte (4+4+4) records (term, doc, freq).
● These are generated as we parse docs.
● Must now sort 100M such 12-byte records by 

term.
● Define a Block ~ 10M such records

● Can easily fit a couple into memory.
● Will have 10 such blocks to start with.

● Basic idea of algorithm:
● Accumulate postings for each block, sort, write to disk.
● Then merge the blocks into one long sorted order.

Sec. 4.2



18

Sec. 4.2



19

Sorting 10 blocks of 10M 
records

● First, read each block and sort within: 
● Quicksort takes 2N ln N expected steps
● In our case 2 x (10M ln 10M) steps

● Exercise: estimate total time to read each Exercise: estimate total time to read each 
block from disk and and quicksort it.block from disk and and quicksort it.

● 10 times this estimate – gives us 10 sorted 
runs of 10M records each.

● Done straightforwardly, need 2 copies of data 
on disk
● But can optimize this

Sec. 4.2



20

Sec. 4.2



21

How to merge the sorted runs?
● Can do binary merges, with a merge tree of log210 = 4 

layers.
● During each layer, read into memory runs in blocks of 

10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2



22

How to merge the sorted runs?
● But it is more efficient to do a n-way merge, where you 

are reading from all blocks simultaneously
● Providing you read decent-sized chunks of each block 

into memory and then write out a decent-sized output 
chunk, then you’re not killed by disk seeks

Sec. 4.2



23

Distributed indexing
● For web-scale indexing (don’t try this at 

home!):
must use a distributed computing cluster

● Individual machines are fault-prone
● Can unpredictably slow down or fail

● How do we exploit such a pool of 
machines?

Sec. 4.4



24

Google data centers
● Google data centers mainly contain commodity 

machines.
● Data centers are distributed around the world.
● Estimate: a total of 1 million servers, 3 million 

processors/cores (Gartner 2007)
● Estimate: Google installs 100,000 servers each 

quarter.
● Based on expenditures of 200–250 million dollars per 

year
● This would be 10% of the computing capacity of 

the world!?!

Sec. 4.4



25

Distributed indexing
● Maintain a master machine directing the 

indexing job – considered “safe”.
● Break up indexing into sets of (parallel) 

tasks.
● Master machine assigns each task to an 

idle machine from a pool.

Sec. 4.4



26

Parallel tasks
● We will use two sets of parallel tasks

● Parsers
● Inverters

● Break the input document collection into 
splits

● Each split is a subset of documents 
(corresponding to blocks in BSBI)

Sec. 4.4



27

Parsers
● Master assigns a split to an idle parser 

machine
● Parser reads a document at a time and 

emits (term, doc) pairs
● Parser writes pairs into j partitions
● Each partition is for a range of terms’ first 

letters
● (e.g., a-f, g-p, q-z) – here j = 3.

● Now to complete the index inversion

Sec. 4.4



28

Inverters
● An inverter collects all (term,doc) pairs (= 

postings) for one term-partition.
● Sorts and writes to postings lists

Sec. 4.4



29

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4



30

MapReduce
● The index construction algorithm we just 

described is an instance of MapReduce.
● MapReduce (Dean and Ghemawat 2004) is a 

robust and conceptually simple framework for 
distributed computing …

● … without having to write code for the 
distribution part.

● They describe the Google indexing system 
(ca. 2002) as consisting of a number of 
phases, each implemented in MapReduce.

Sec. 4.4



31

MapReduce
● Index construction was just one phase.
● Another phase: transforming a term-partitioned 

index into a document-partitioned index.
● Term-partitioned: one machine handles a subrange 

of terms
● Document-partitioned: one machine handles a 

subrange of documents
● As we discuss in the web part of the course) 

most search engines use a 
document-partitioned index … better load 
balancing, etc.

Sec. 4.4



32

Schema for index construction 
in MapReduce

● Schema of map and reduce functions
● map: input → list(k, v)     reduce: (k,list(v)) → output
● Instantiation of the schema for index construction
● map: web collection → list(termID, docID)
● reduce: (<termID1, list(docID)>, <termID2, list(docID)>, 

…) → (postings list1, postings list2, …)
● Example for index construction
● map: d2 : C died. d1 : C came, C c’ed. → (<C, d2>, 

<died,d2>, <C,d1>, <came,d1>, <C,d1>, <c’ed, d1>
● reduce: (<C,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, 

<c’ed,(d1)>)  →  (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,
(d1:1)>, <c’ed,(d1:1)>)

Sec. 4.4



33

Dynamic indexing
● Up to now, we have assumed that 

collections are static.
● They rarely are: 

● Documents come in over time and need to be 
inserted.

● Documents are deleted and modified.
● This means that the dictionary and postings 

lists have to be modified:
● Postings updates for terms already in dictionary
● New terms added to dictionary

Sec. 4.5



34

Simplest approach
● Maintain “big” main index
● New docs go into “small” auxiliary index
● Search across both, merge results
● Deletions

● Invalidation bit-vector for deleted docs
● Filter docs output on a search result by this 

invalidation bit-vector
● Periodically, re-index into one main index

Sec. 4.5



35

Issues with main and auxiliary 
indexes

● Problem of frequent merges – you touch stuff a lot
● Poor performance during merge
● Actually:

● Merging of the auxiliary index into the main index is efficient if 
we keep a separate file for each postings list.

● Merge is the same as a simple append.
● But then we would need a lot of files – inefficient for O/S.

● Assumption for the rest of the lecture: The index is one 
big file.

● In reality: Use a scheme somewhere in between (e.g., 
split very large postings lists, collect postings lists of 
length 1 in one file etc.)

Sec. 4.5



39

Further issues with multiple 
indexes

● Collection-wide statistics are hard to maintain
● E.g., when we spoke of spell-correction: which of 

several corrected alternatives do we present to 
the user?
● We said, pick the one with the most hits

● How do we maintain the top ones with multiple 
indexes and invalidation bit vectors?
● One possibility: ignore everything but the main index 

for such ordering
● Will see more such statistics used in results 

ranking

Sec. 4.5



40

Dynamic indexing at search 
engines

● All the large search engines now do dynamic 
indexing

● Their indices have frequent incremental 
changes
● News items, blogs, new topical web pages

– Sarah Palin, …

● But (sometimes/typically) they also 
periodically reconstruct the index from scratch
● Query processing is then switched to the new 

index, and the old index is then deleted

Sec. 4.5



41

Sec. 4.5



Web Search:

Techniques, algorithms and Aplications

Basic Techniques 
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre … 
and Christopher Manning and Prabhakar Raghavan]


