Web Search: Techniques, algorithms and Aplications

Basic Techniques for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre ... and Christopher Manning and Prabhakar Raghavan]

Basic Techniques for Web Search

- Review of applications
- Basic Techniques in detail:
 - Boolean search
 - Vocabularies, dictionaries, index
 - Scoring, evaluation, complete system
 - Web search
- Semantic search

Recap of previous lectures

- Basic inverted indexes:
 - Structure: Dictionary and Postings

- Key step in construction: Sorting
- Boolean query processing
 - Intersection by linear time "merging"
 - Simple optimizations

Scoring (Chap. 6)

- Ranked retrieval
- Scoring documents
- Weighting
- Vector space scoring

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering over the (top) documents in the collection with respect to a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

- A commonly used measure of overlap of two sets A and B
- $jaccard(A,B) = |A \cap B| / |A \cup B|$
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B$ = 0
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- <u>Query</u>: *ides of march*
- <u>Document</u> 1: caesar died in march
- <u>Document</u> 2: the long march

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length

Recall: Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|v|}$

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in \mathbb{N}^{\vee} :
 - a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the **bag of words** model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR

Log-frequency weighting

The log frequency weight of term t in d is

147	_[]1-	$+\log_{10} \operatorname{tf}_{t,d}$,	if $tf_{t,d} > 0$
$W_{t,d}$		0,	otherwise

- 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.
- Score for a document-query pair: sum over terms t in both q and d:

• score =
$$\sum_{t \in q \cap d} (1 + \log_{10} tf_{t,d})$$

 The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., *arachnocentric*)
- A document containing this term is very likely to be relevant to the query *arachnocentric*
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., *high, increase, line*)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like *high, increase, and line*
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of *t*: the number of documents that contain *t*
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of *t* by

$$\operatorname{idf}_{t} = \log_{10}(N/\operatorname{df}_{t})$$

We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf.

idf example, suppose N = 1million

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

 $\operatorname{idf}_{t} = \log_{10} (N/\mathrm{df}_{t})$

There is one idf value for each term t in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

 Which word is a better search term (and should get a higher weight)?

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log tf_{t,d}) \times \log_{10}(N / df_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Final ranking of documents for a query

Score(q,d)= $\sum_{r \in q \cap d}$ tf.idf_{t,d}

Binary \rightarrow count \rightarrow weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in R^{|V|}$

Scoring, Vector Space Model

- Ranked retrieval
- Scoring documents
- Weighting
- Vector space scoring

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

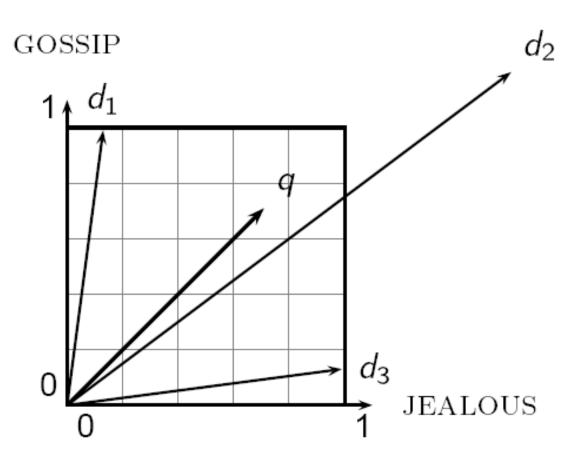
- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity \approx inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance between q and d_2 is large even though the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.



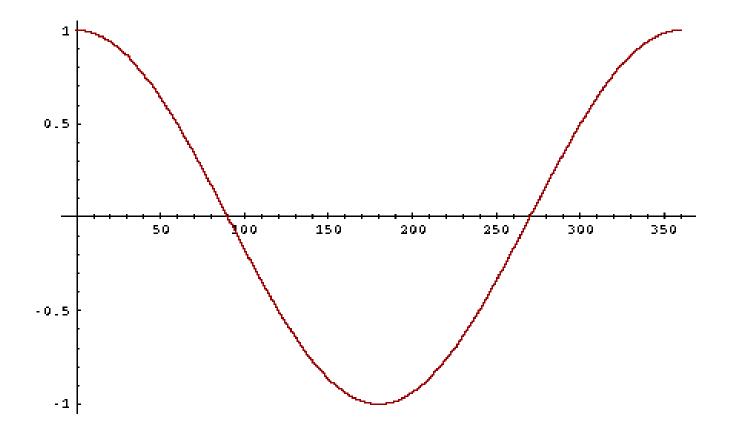
Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines



But how – and why – should we be computing cosines?

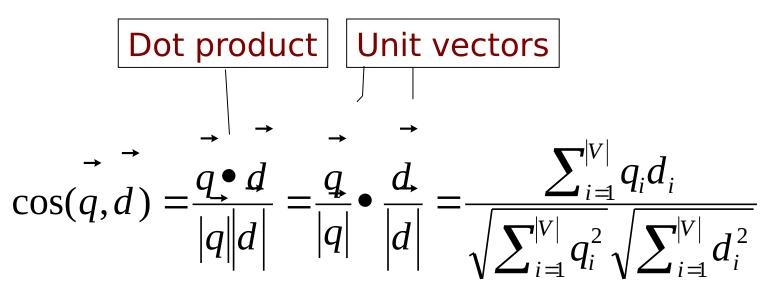
Length normalization

 A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L₂ norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)



 q_i is the tf-idf weight of term *i* in the query d_i is the tf-idf weight of term *i* in the document

 $\cos(\overrightarrow{q},\overrightarrow{d})$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} ... or, equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

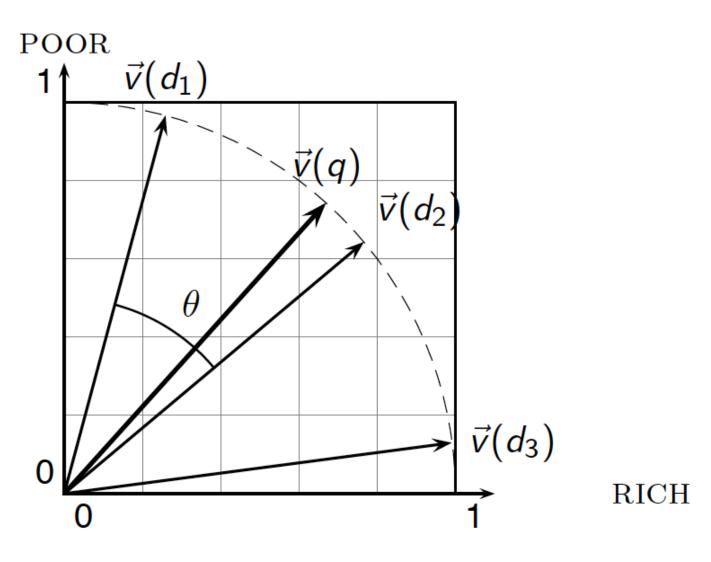
Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q},\vec{d}) = \vec{q}\cdot\vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated



Cosine similarity amongst 3 documents

How similar are the novels SaS: Sense and Sensibility PaP: Pride and Prejudice, and WH: Wuthering Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

After length normalization

term	SaS	PaP	WH	term	SaS	PaP	WH
affection	3.06	2.76	2.30	affection	0.789	0.832	0.524
jealous	2.00	1.85	2.04	jealous	0.515	0.555	0.465
gossip	1.30	0	1.78	gossip	0.335	0	0.405
wuthering	0	0	2.58	wuthering	0	0	0.588

```
cos(SaS,PaP) \approx
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) \approx 0.79
cos(PaP,WH) \approx 0.69
```

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Computing cosine scores

 $\operatorname{COSINESCORE}(q)$

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 for each query term t
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- 5 **for each** $pair(d, tf_{t,d})$ in postings list
- 6 **do** $Scores[d] + = w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]

Speeding (Chap. 7)

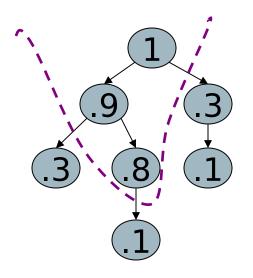
Speeding up vector space ranking

Computing the *K* largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with *K* highest cosines?
- Let J = number of docs with nonzero cosines
 - We seek the *K* best of these *J*

Use heap for selecting top K

- Binary tree in which each node's value > the values of children
- Takes 2J operations to construct, then each of K "winners" read off in 2log J steps.
- For J=1M, K=100, this is about 10% of the cost of sorting.



Bottlenecks

- Primary computational bottleneck in scoring: <u>cosine</u> <u>computation</u>
- Can we avoid all this computation?
- Yes, but may sometimes get it wrong
 - a doc *not* in the top K may creep into the list of K output docs
 - Is this such a bad thing?

Cosine similarity is only a proxy

- User has a task and a query formulation
- Cosine matches docs to query
- Thus cosine is anyway a proxy for user happiness
- If we get a list of K docs "close" to the top K by cosine measure, should be ok

Generic approach

- Find a set A of contenders, with K < |A| << N
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top *K* docs in *A*
- Think of *A* as <u>pruning</u> non-contenders
- The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach

Index elimination

- Only consider docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms

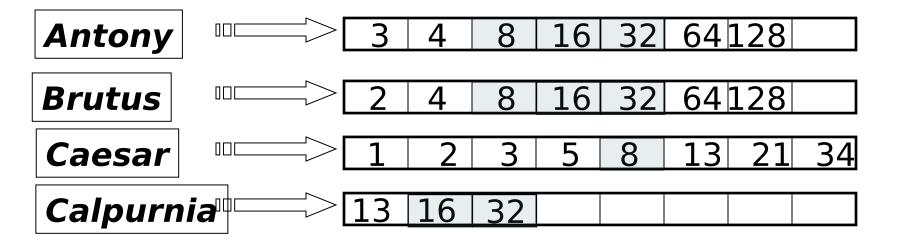
High-idf query terms only

- For a query such as *catcher in the rye*
- Only accumulate scores from *catcher* and *rye*
- Intuition: *in* and *the* contribute little to the scores and so don't alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders

Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a "soft conjunction" on queries seen on web search engines (early Google)
- Easy to implement in postings traversal

3 of 4 query terms



Scores only computed for docs 8, 16 and 32.

Champion lists

- Precompute for each dictionary term *t*, the *r* docs of highest weight in *t*'s postings
 - Call this the <u>champion list</u> for *t*
 - (aka <u>fancy list</u> or <u>top docs</u> for *t*)
- Note that *r* has to be chosen at index build time
 - Thus, it's possible that r < K
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the *K* top-scoring docs from amongst these

Web Search: Techniques, algorithms and Aplications

Basic Techniques for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre ... and Christopher Manning and Prabhakar Raghavan]

