
Web Search:

Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre …
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es

 2

Basic Techniques
for Web Search

 Review of applications
 Basic Techniques in detail:

 Boolean search
 Vocabularies, dictionaries, index
 Scoring, evaluation, complete system
 Web search

 Semantic search

3

Recap of previous lectures
 Basic inverted indexes:

 Structure: Dictionary and Postings

 Key step in construction: Sorting
 Boolean query processing

 Intersection by linear time “merging”
 Simple optimizations

Ch. 1

 4

Scoring (Chap. 6)

 Ranked retrieval

 Scoring documents

 Weighting

 Vector space scoring

Ranked retrieval
 Thus far, our queries have all been Boolean.

 Documents either match or don’t.
 Good for expert users with precise understanding of their

needs and the collection.
 Also good for applications: Applications can easily

consume 1000s of results.
 Not good for the majority of users.

 Most users incapable of writing Boolean queries (or
they are, but they think it’s too much work).

 Most users don’t want to wade through 1000s of
results.

 This is particularly true of web search.

Ch. 6

Problem with Boolean search:
feast or famine

 Boolean queries often result in either too few (=0) or too
many (1000s) results.

 Query 1: “standard user dlink 650” → 200,000 hits
 Query 2: “standard user dlink 650 no card found”: 0 hits
 It takes a lot of skill to come up with a query that

produces a manageable number of hits.
 AND gives too few; OR gives too many

Ch. 6

Ranked retrieval models

 Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system
returns an ordering over the (top) documents in the
collection with respect to a query

 Free text queries: Rather than a query language of
operators and expressions, the user’s query is just one
or more words in a human language

 In principle, there are two separate choices here, but in
practice, ranked retrieval models have normally been
associated with free text queries and vice versa

7

Feast or famine: not a problem
in ranked retrieval

 When a system produces a ranked result set, large
result sets are not an issue

 Indeed, the size of the result set is not an issue
 We just show the top k (≈ 10) results
 We don’t overwhelm the user

 Premise: the ranking algorithm works

Ch. 6

Scoring as the basis of ranked
retrieval

 We wish to return in order the documents most likely to
be useful to the searcher

 How can we rank-order the documents in the collection
with respect to a query?

 Assign a score – say in [0, 1] – to each document
 This score measures how well document and query

“match”.

Ch. 6

Query-document matching
scores

 We need a way of assigning a score to a
query/document pair

 Let’s start with a one-term query
 If the query term does not occur in the document: score

should be 0
 The more frequent the query term in the document, the

higher the score (should be)
 We will look at a number of alternatives for this.

Ch. 6

Take 1: Jaccard coefficient

 A commonly used measure of overlap of two sets A and
B

 jaccard(A,B) = |A ∩ B| / |A ∪ B|
 jaccard(A,A) = 1
 jaccard(A,B) = 0 if A ∩ B = 0
 A and B don’t have to be the same size.
 Always assigns a number between 0 and 1.

Ch. 6

Jaccard coefficient: Scoring
example

 What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

 Query: ides of march
 Document 1: caesar died in march
 Document 2: the long march

Ch. 6

Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many times a
term occurs in a document)

 Rare terms in a collection are more informative than
frequent terms. Jaccard doesn’t consider this
information

 We need a more sophisticated way of normalizing for
length

Ch. 6

Recall: Binary term-document
incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Sec. 6.2

Term-document count matrices
 Consider the number of occurrences of a term in a

document:
 Each document is a count vector in ℕv:

 a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Bag of words model

 Vector representation doesn’t consider the ordering of
words in a document

 John is quicker than Mary and Mary is quicker than
John have the same vectors

 This is called the bag of words model.
 In a sense, this is a step back: The positional index was

able to distinguish these two documents.
 We will look at “recovering” positional information later in

this course.
 For now: bag of words model

Term frequency tf
 The term frequency tft,d of term t in document d is

defined as the number of times that t occurs in d.
 We want to use tf when computing query-document

match scores. But how?
 Raw term frequency is not what we want:

 A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the
term.

 But not 10 times more relevant.
 Relevance does not increase proportionally with term

frequency.
NB: frequency = count in IRNB: frequency = count in IR

Log-frequency weighting
 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
 Score for a document-query pair: sum over terms t in

both q and d:
 score

 The score is 0 if none of the query terms is present in
the document.



 


otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

=∑t∈q∩d
1  log10 tf t , d 

Sec. 6.2

Document frequency

 Rare terms are more informative than frequent terms
 Recall stop words

 Consider a term in the query that is rare in the collection
(e.g., arachnocentric)

 A document containing this term is very likely to be
relevant to the query arachnocentric

 → We want a high weight for rare terms like
arachnocentric.

Sec. 6.2.1

Document frequency,
continued

 Frequent terms are less informative than rare terms
 Consider a query term that is frequent in the collection

(e.g., high, increase, line)
 A document containing such a term is more likely to be

relevant than a document that doesn’t
 But it’s not a sure indicator of relevance.
 → For frequent terms, we want high positive weights for

words like high, increase, and line
 But lower weights than for rare terms.
 We will use document frequency (df) to capture this.

Sec. 6.2.1

idf weight
 dft is the document frequency of t: the number of

documents that contain t
 dft is an inverse measure of the informativeness of t
 dft  N

 We define the idf (inverse document frequency) of t by

 We use log (N/dft) instead of N/dft to “dampen” the
effect of idf.

idf t= log 10 N /df t 

Sec. 6.2.1

idf example, suppose N = 1
million

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N

Effect of idf on ranking

 Does idf have an effect on ranking for one-term queries,
like

 iPhone
 idf has no effect on ranking one term queries

 idf affects the ranking of documents for queries with
at least two terms

 For the query capricious person, idf weighting makes
occurrences of capricious count for much more in the
final document ranking than occurrences of person.

23

Collection vs. Document
frequency

 The collection frequency of t is the number of
occurrences of t in the collection, counting multiple
occurrences.

 Example:

 Which word is a better search term (and should get a
higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

tf-idf weighting

 The tf-idf weight of a term is the product of its tf
weight and its idf weight.

 Best known weighting scheme in information retrieval
 Note: the “-” in tf-idf is a hyphen, not a minus sign!
 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a
document

 Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt



Sec. 6.2.2

Final ranking of documents for
a query

26

Score q , d =∑r∈q∩d
tf . idf t , d

Sec. 6.2.2

Binary → count → weight
matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a
real-valued vector of tf-idf weights ∈ R|V|

Sec. 6.3

 28

Scoring, Vector Space Model

 Ranked retrieval

 Scoring documents

 Weighting

 Vector space scoring

Documents as vectors

 So we have a |V|-dimensional vector space
 Terms are axes of the space
 Documents are points or vectors in this space
 Very high-dimensional: tens of millions of dimensions

when you apply this to a web search engine
 These are very sparse vectors - most entries are zero.

Sec. 6.3

Queries as vectors
 Key idea 1: Do the same for queries: represent them as

vectors in the space
 Key idea 2: Rank documents according to their

proximity to the query in this space
 proximity = similarity of vectors
 proximity ≈ inverse of distance
 Recall: We do this because we want to get away from

the you’re-either-in-or-out Boolean model.
 Instead: rank more relevant documents higher than less

relevant documents

Sec. 6.3

Formalizing vector space
proximity

 First cut: distance between two points
 (= distance between the end points of the two

vectors)
 Euclidean distance?
 Euclidean distance is a bad idea . . .
 . . . because Euclidean distance is large for vectors of

different lengths.

Sec. 6.3

Why distance is a bad idea

The Euclidean
distance between q

and d2 is large even
though the

distribution of terms in
the query q and the
distribution of

terms in the document
d2 are

very similar.

Sec. 6.3

Use angle instead of distance

 Thought experiment: take a document d and append it
to itself. Call this document d′.

 “Semantically” d and d′ have the same content
 The Euclidean distance between the two documents

can be quite large
 The angle between the two documents is 0,

corresponding to maximal similarity.

 Key idea: Rank documents according to angle with
query.

Sec. 6.3

From angles to cosines

 The following two notions are equivalent.
 Rank documents in decreasing order of the angle

between query and document
 Rank documents in increasing order of

cosine(query,document)
 Cosine is a monotonically decreasing function for the

interval [0o, 180o]

Sec. 6.3

From angles to cosines

 But how – and why – should we be computing cosines?

Sec. 6.3

Length normalization
 A vector can be (length-) normalized by dividing each of

its components by its length – for this we use the L2
norm:

 Dividing a vector by its L2 norm makes it a unit (length)
vector (on surface of unit hypersphere)

 Effect on the two documents d and d′ (d appended to
itself) from earlier slide: they have identical vectors after
length-normalization.

 Long and short documents now have comparable
weights


i ixx 2

2



Sec. 6.3

cosine(query,document)











V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(











Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3

Cosine for length-normalized
vectors

 For length-normalized vectors, cosine similarity is simply
the dot product (or scalar product):

 for q, d length-normalized.

38

cos  q ,d =q · d=∑i=1

∣V ∣
q id i

Cosine similarity illustrated

39

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are

the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?
Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Sec. 6.3

Computing cosine scores

Sec. 6.3

 43

Speeding (Chap. 7)

 Speeding up vector space ranking

Computing the K largest
cosines: selection vs. sorting

 Typically we want to retrieve the top K docs (in the
cosine ranking for the query)

 not to totally order all docs in the collection
 Can we pick off docs with K highest cosines?
 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Sec. 7.1

Use heap for selecting top K
 Binary tree in which each node’s value > the values of

children
 Takes 2J operations to construct, then each of K

“winners” read off in 2log J steps.
 For J=1M, K=100, this is about 10% of the cost of

sorting.

1

.9 .3

.8.3

.1

.1

Sec. 7.1

Bottlenecks

 Primary computational bottleneck in scoring: cosine
computation

 Can we avoid all this computation?
 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K
output docs

 Is this such a bad thing?

Sec. 7.1.1

Cosine similarity is only a proxy

 User has a task and a query formulation
 Cosine matches docs to query
 Thus cosine is anyway a proxy for user happiness
 If we get a list of K docs “close” to the top K by cosine

measure, should be ok

Sec. 7.1.1

Generic approach

 Find a set A of contenders, with K < |A| << N
 A does not necessarily contain the top K, but has

many docs from among the top K
 Return the top K docs in A

 Think of A as pruning non-contenders
 The same approach is also used for other (non-cosine)

scoring functions
 Will look at several schemes following this approach

Sec. 7.1.1

Index elimination

 Only consider docs containing at least one query term
 Take this further:

 Only consider high-idf query terms
 Only consider docs containing many query terms

Sec. 7.1.2

High-idf query terms only

 For a query such as catcher in the rye
 Only accumulate scores from catcher and rye
 Intuition: in and the contribute little to the scores and so

don’t alter rank-ordering much
 Benefit:

 Postings of low-idf terms have many docs  these
(many) docs get eliminated from set A of contenders

Sec. 7.1.2

Docs containing many query
terms

 Any doc with at least one query term is a candidate for
the top K output list

 For multi-term queries, only compute scores for docs
containing several of the query terms

 Say, at least 3 out of 4
 Imposes a “soft conjunction” on queries seen on web

search engines (early Google)
 Easy to implement in postings traversal

Sec. 7.1.2

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

Champion lists

 Precompute for each dictionary term t, the r docs of
highest weight in t’s postings

 Call this the champion list for t
 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time
 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the
champion list of some query term

 Pick the K top-scoring docs from amongst these

Sec. 7.1.3

Web Search:

Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre …
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es

