Web Search:
Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre ...
and Christopher Manning and Prabhakar Raghavan]

Xa

mailto:german.rigau@ehu.es

Basic Techniques
for Web Search

= Review of applications

= Basic Techniques in detalil:
= Boolean search

= \Vocabularies, dictionaries, index
= Scoring, evaluation, complete system
= Web search

= Semantic search

Recap of previous lectures

= Basic inverted indexes:
= Structure: Dictionary and Postings

= Key step in construction: Sorting

= Boolean query processing
= Intersection by linear time “merging”
= Simple optimizations

Scoring (Chap. 6)

Ranked retrieval
Scoring documents
Weighting

Vector space scoring

Ranked retrieval

Thus far, our queries have all been Boolean.
= Documents either match or don't.

Good for expert users with precise understanding of their
needs and the collection.

= Also good for applications: Applications can easily
consume 1000s of results.

Not good for the majority of users.

= Most users incapable of writing Boolean queries (or
they are, but they think it’s too much work).

= Most users don’t want to wade through 1000s of
results.

= This Is particularly true of web search.

Problem with Boolean search:
feast or famine

Boolean queries often result in either too few (=0) or too
many (1000s) results.

Query 1: “standard user dlink 650" - 200,000 hits
Query 2: “standard user dlink 650 no card found”: O hits

It takes a lot of skill to come up with a query that
produces a manageable number of hits.

= AND gives too few; OR gives too many

Ranked retrieval models

= Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system
returns an ordering over the (top) documents in the
collection with respect to a query

" Free text queries: Rather than a query language of
operators and expressions, the user’s query Is just one
or more words in a human language

= In principle, there are two separate choices here, but In
practice, ranked retrieval models have normally been
associated with free text queries and vice versa

Feast or famine: not a problem
In ranked retrieval

= When a system produces a ranked result set, large
result sets are not an issue

» |ndeed, the size of the result set Is not an issue
= We just show the top k (= 10) results
= We don’t overwhelm the user

* Premise: the ranking algorithm works

Scoring as the basis of ranked
retrieval

We wish to return in order the documents most likely to
be useful to the searcher

How can we rank-order the documents in the collection
with respect to a query?

Assign a score — say in [0, 1] — to each document

This score measures how well document and query
“match”.

Query-document matching
scores

We need a way of assigning a score to a
guery/document pair

Let’s start with a one-term query

If the query term does not occur in the document: score
should be O

The more frequent the query term in the document, the
higher the score (should be)

We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets A and
B

jaccard(A,B) =|An B|/|A U B|
jaccard(AA) =1

jaccard(A,B) =0ifAnB=0

A and B don’t have to be the same size.
Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring
example

What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

Query: ides of march
Document 1: caesar died in march
Document 2: the long march

Issues with Jaccard for scoring

= |t doesn’t consider term frequency (how many times a
term occurs in a document)

= Rare terms in a collection are more informative than
frequent terms. Jaccard doesn’t consider this
Information

= We need a more sophisticated way of normalizing for
length

Recall: Binary term-document
Incidence matrix

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector € {0,1}V

Term-document count matrices

= Consider the number of occurrences of aterm in a

document:

Each document is a count vector in Nv:
= a column below

Antony and Cleopatra || Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Bag of words model

Vector representation doesn’t consider the ordering of
words in a document

John is quicker than Mary and Mary is quicker than
John have the same vectors

This is called the bag of words model.

In a sense, this is a step back: The positional index was
able to distinguish these two documents.

We will look at “recovering” positional information later In
this course.

For now: bag of words model

Term frequency tf

The term frequency tf;, of term t in document d is
defined as the number of times that t occurs In d.

We want to use tf when computing query-document
match scores. But how?

Raw term frequency is not what we want:

= A document with 10 occurrences of the term I1s more
relevant than a document with 1 occurrence of the
term.

= But not 10 times more relevant.
Relevance does not increase proportionally with term

frequency.

Log-frequency weighting

The log frequency weight of term tin d is

01 +1log,, tf,,, if tf,, >0
W = : ,
bd H 0, otherwise

0-0,1-1,2- 13,10 - 2,1000 - 4, etc.

Score for a document-query pair: sum over terms t in
both g and 4.

score :ZtEqﬂd<1 + log,, tft,d)

The score is 0 if none of the query terms is present in
the document.

Document frequency

Rare terms are more informative than frequent terms
= Recall stop words

Consider a term in the gquery that is rare in the collection
(e.g., arachnocentric)

A document containing this term is very likely to be
relevant to the query arachnocentric

- We want a high weight for rare terms like
arachnocentric.

Document frequency,
continued

Freguent terms are less informative than rare terms

Consider a query term that is frequent in the collection
(e.qg., high, increase, line)

A document containing such a term is more likely to be
relevant than a document that doesn't

But it's not a sure indicator of relevance.

- For frequent terms, we want high positive weights for
words like high, increase, and line

But lower weights than for rare terms.
We will use document frequency (df) to capture this.

Idf weight

= df; Is the document frequency of t: the number of
documents that contain t

= df, IS an inverse measure of the informativeness of t
= dfi <N
= We define the idf (inverse document frequency) of t by

idf = log,,(N/df)

= We use log (N/df,) instead of N/df; to “dampen” the
effect of idf.

Idf example, suppose N =1

million

em
calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

idf, =log,, (N/df,)

There Is one idf value for each term t in a collection.

Effect of idf on ranking

= Does idf have an effect on ranking for one-term queries,
like
= |IPhone
= |df has no effect on ranking one term queries

= |df affects the ranking of documents for queries with
at least two terms

= For the query capricious person, idf weighting makes
occurrences of capricious count for much more in the
final document ranking than occurrences of person.

Collection vs. Document
frequency

= The collection frequency of t is the number of
occurrences of t in the collection, counting multiple
occurrences.

= Example:

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

= Which word is a better search term (and should get a
higher weight)?

tf-1df weighting

The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(1+logtt, ;) Xlog,,(N/df,)

Best known weighting scheme in information retrieval
= Note: the “-” In tf-idf is a hyphen, not a minus sign!
= Alternative names: tf.idf, tf x idf

Increases with the number of occurrences within a
document

Increases with the rarity of the term in the collection

Final ranking of documents for
a query

Score(q,d)zzreqﬂd tf.idf, ,

Binary - count —» weight
matrix

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a
real-valued vector of tf-idf weights € RV

Scoring, Vector Space Model

Ranked retrieval
Scoring documents
Weighting

Vector space scoring

28

Documents as vectors

So we have a |V|-dimensional vector space
Terms are axes of the space
Documents are points or vectors in this space

Very high-dimensional: tens of millions of dimensions
when you apply this to a web search engine

These are very sparse vectors - most entries are zero.

Queries as vectors

Key idea 1: Do the same for queries: represent them as
vectors in the space

Key idea 2: Rank documents according to their
proximity to the query in this space

proximity = similarity of vectors
proximity = inverse of distance

Recall: We do this because we want to get away from
the you’re-either-in-or-out Boolean model.

Instead: rank more relevant documents higher than less
relevant documents

Formalizing vector space
proximity

First cut: distance between two points

" (= distance between the end points of the two
vectors)

Euclidean distance?
Euclidean distance is a bad idea . . .

.. . because Euclidean distance is large for vectors of
different lengths.

Why distance Is a bad idea

The Euclidean GOSSIP co
distance between q J
1

and d, is large even Ty
though the

distribution of terms In
the query g and the
distribution of

terms in the document
d, are

very similar.

JEALOUS

Use angle instead of distance

Thought experiment: take a document d and append it
to itself. Call this document d'.

“Semantically” d and d' have the same content

The Euclidean distance between the two documents
can be quite large

The angle between the two documents is 0O,
corresponding to maximal similarity.

Key idea: Rank documents according to angle with
query.

From angles to cosines

= The following two notions are equivalent.

= Rank documents in decreasing order of the angle
between query and document

= Rank documents in increasing order of
cosine(query,document)

= Cosine is a monotonically decreasing function for the
Interval [Oe, 180¢]

From angles to cosines

50 (1] 150 200 250 300 350

-1t

But how — and why — should we be computing cosines?

Length normalization

= Avector can be (length-) normalized by dividing each of
Its components by its length — for this we use the L,

norm: .
— 2
[x[, =y 2%

= Dividing a vector by its L, norm makes it a unit (length)
vector (on surface of unit hypersphere)

= Effect on the two documents d and d' (d appended to
itself) from earlier slide: they have identical vectors after
length-normalization.

= Long and short documents now have comparable
weights

cosine(query,document)

Dot product | | Unit vectors

) \

-

.
4

q_gd q, i 94,
I S

g, Is the tf-idf weight of term / in the query
d. is the tf-idf weight of term / in the document

COS(q,d) =

- >

cos(qg,d) is the cosine similarity of q “and d N
equivalently, the cosine of the angle between q and d.

Cosine for length-normalized
vectors

= For length-normalized vectors, cosine similarity is simply

the dot product (or scalar product):

SN V]
cos(3,8)=3-3=3 " 4

for g, d length-normalized.

Cosine similarity illustrated

POOR
14 v(d1)

—

—

/

/ ,
/L\Q/// dé \\
| o7

[amm——rh
W

> RICH
0 1

39

Cosine similarity amongst 3 documents

How similar are

the novels term
SasS: .Sfelnse and Affection 115 58 20
Sensibility .
_ jealous 10 7 11

PaP: Pride and

o ossi 2 0 6
Prejudice, and Ioeo
WH: Wuthering wuthering 0 ° >

Heights? :
J Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.

Log frequency weighting After length normalization

term SaS PaP WH term SaS PaP WH
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) =

0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0
~ 0.94

cos(SaS,WH) = 0.79

cos(PaP,WH) = 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Computing cosine scores

COSINESCORE(q)
1 float Scores[N] =0

float Length[N]

for each query term t

do calculate w; 4 and fetch postings list for t
for each pair(d,tf;) in postings list
do Scores|d]+ = w¢ g X Wy g

Read the array Length

for each d

do Scores|d] = Scores|d|/Length|d]

return Top K components of Scores|]

S O 00 Ny O B W N

—

Speeding (Chap. 7)

= Speeding up vector space ranking

43

Computing the K largest
cosines: selection vs. sorting

Typically we want to retrieve the top K docs (in the
cosine ranking for the query)

= not to totally order all docs in the collection
Can we pick off docs with K highest cosines?
Let J = number of docs with nonzero cosines

= We seek the K best of these J

Use heap for selecting top K

Binary tree in which each node’s value > the values of
children

Takes 2J operations to construct, then each of K
“winners” read off in 2log J steps.

For J=1M, K=100, this is about 10% of the cost of
sorting.

Bottlenecks

Primary computational bottleneck in scoring: cosine
computation

Can we avoid all this computation?
Yes, but may sometimes get it wrong

= adoc not in the top K may creep into the list of K
output docs

= |s this such a bad thing?

Cosine similarity Is only a proxy

User has a task and a query formulation
Cosine matches docs to query
Thus cosine is anyway a proxy for user happiness

If we get a list of K docs “close” to the top K by cosine
measure, should be ok

Generic approach

Find a set A of contenders, with K < |A| << N

= A does not necessarily contain the top K, but has
many docs from among the top K

= Return the top K docsin A
Think of A as pruning non-contenders

The same approach is also used for other (non-cosine)
scoring functions

Will look at several schemes following this approach

Index elimination

= Only consider docs containing at least one query term
= Take this further:

= Only consider high-idf query terms

= Only consider docs containing many gquery terms

High-idf query terms only

For a query such as catcher in the rye
Only accumulate scores from catcher and rye

Intuition: /in and the contribute little to the scores and so
don't alter rank-ordering much

Benefit:

= Postings of low-idf terms have many docs — these
(many) docs get eliminated from set A of contenders

Docs containing many query
terms

Any doc with at least one query term is a candidate for
the top K output list

For multi-term queries, only compute scores for docs
containing several of the query terms

= Say, at least 3 out of 4

= Imposes a “soft conjunction” on queries seen on web
search engines (early Google)

Easy to implement in postings traversal

3 of 4 query terms

Antony| "——>= 3[4 | 8116/ 32] 64128
Brutus| ™——>[214 1 8[16]32] 641128
Caesar| "™——>[1] 2] 3/ 5[8 [13[21
Calpurnia*——=[13 [16 [3?2

Scores only computed for docs 8, 16 and 32.

Champion lists

Precompute for each dictionary term t, the r docs of
highest weight in t's postings

= Call this the champion list for t

= (aka fancy list or top docs for i)

Note that r has to be chosen at index build time

= Thus, it's possible that r < K

At query time, only compute scores for docs in the
champion list of some query term

= Pick the K top-scoring docs from amongst these

Web Search:
Techniques, algorithms and Aplications

Basic Techniques
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre ...
and Christopher Manning and Prabhakar Raghavan]

Xa

mailto:german.rigau@ehu.es

