
Web Search:

Techniques, algorithms and Aplications

Basic Techniques 
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre … 
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es


  2

Basic Techniques 
for Web Search

 Review of applications 
 Basic Techniques in detail:

 Boolean search
 Vocabularies, dictionaries, index
 Scoring, evaluation, complete system
 Web search

 Semantic search



3

Recap of previous lectures
 Basic inverted indexes:

 Structure: Dictionary and Postings

 Key step in construction: Sorting
 Boolean query processing

 Intersection by linear time “merging”
 Simple optimizations

Ch. 1



  4

Scoring (Chap. 6)

 Ranked retrieval

 Scoring documents

 Weighting

 Vector space scoring



Ranked retrieval
 Thus far, our queries have all been Boolean.

 Documents either match or don’t.
 Good for expert users with precise understanding of their 

needs and the collection.
 Also good for applications: Applications can easily 

consume 1000s of results.
 Not good for the majority of users.

 Most users incapable of writing Boolean queries (or 
they are, but they think it’s too much work).

 Most users don’t want to wade through 1000s of 
results.

 This is particularly true of web search.

Ch. 6



Problem with Boolean search:
feast or famine

 Boolean queries often result in either too few (=0) or too 
many (1000s) results.

 Query 1: “standard user dlink 650” → 200,000 hits
 Query 2: “standard user dlink 650 no card found”: 0 hits
 It takes a lot of skill to come up with a query that 

produces a manageable number of hits.
 AND gives too few; OR gives too many

Ch. 6



Ranked retrieval models

 Rather than a set of documents satisfying a query 
expression, in ranked retrieval models, the system 
returns an ordering over the (top) documents in the 
collection with respect to a query

 Free text queries: Rather than a query language of 
operators and expressions, the user’s query is just one 
or more words in a human language

 In principle, there are two separate choices here, but in 
practice, ranked retrieval models have normally been 
associated with free text queries and vice versa

7



Feast or famine: not a problem 
in ranked retrieval

 When a system produces a ranked result set, large 
result sets are not an issue

 Indeed, the size of the result set is not an issue
 We just show the top k ( ≈ 10) results
 We don’t overwhelm the user

 Premise: the ranking algorithm works

Ch. 6



Scoring as the basis of ranked 
retrieval

 We wish to return in order the documents most likely to 
be useful to the searcher

 How can we rank-order the documents in the collection 
with respect to a query?

 Assign a score – say in [0, 1] – to each document
 This score measures how well document and query 

“match”.

Ch. 6



Query-document matching 
scores

 We need a way of assigning a score to a 
query/document pair

 Let’s start with a one-term query
 If the query term does not occur in the document: score 

should be 0
 The more frequent the query term in the document, the 

higher the score (should be)
 We will look at a number of alternatives for this.

Ch. 6



Take 1: Jaccard coefficient

 A commonly used measure of overlap of two sets A and 
B

 jaccard(A,B) = |A ∩ B| / |A  ∪ B|
 jaccard(A,A) = 1
 jaccard(A,B) = 0 if A ∩ B = 0
 A and B don’t have to be the same size.
 Always assigns a number between 0 and 1.

Ch. 6



Jaccard coefficient: Scoring 
example

 What is the query-document match score that the 
Jaccard coefficient computes for each of the two 
documents below?

 Query: ides of march
 Document 1: caesar died in march
 Document 2: the long march

Ch. 6



Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many times a 
term occurs in a document)

 Rare terms in a collection are more informative than 
frequent terms. Jaccard doesn’t consider this 
information

 We need a more sophisticated way of normalizing for 
length

Ch. 6



Recall: Binary term-document 
incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Sec. 6.2



Term-document count matrices
 Consider the number of occurrences of a term in a 

document: 
 Each document is a count vector in ℕv: 

 a column below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2



Bag of words model

 Vector representation doesn’t consider the ordering of 
words in a document

 John is quicker than Mary and Mary is quicker than 
John have the same vectors

 This is called the bag of words model.
 In a sense, this is a step back: The positional index was 

able to distinguish these two documents.
 We will look at “recovering” positional information later in 

this course.
 For now: bag of words model



Term frequency tf
 The term frequency tft,d of term t in document d is 

defined as the number of times that t occurs in d.
 We want to use tf when computing query-document 

match scores. But how?
 Raw term frequency is not what we want:

 A document with 10 occurrences of the term is more 
relevant than a document with 1 occurrence of the 
term.

 But not 10 times more relevant.
 Relevance does not increase proportionally with term 

frequency.
NB: frequency = count in IRNB: frequency = count in IR



Log-frequency weighting
 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
 Score for a document-query pair: sum over terms t in 

both q and d:
 score

 The score is 0 if none of the query terms is present in 
the document.



 


otherwise 0,

0   tfif, tflog  1
  10 t,dt,d

t,dw

=∑t∈q∩d
1  log10 tf t , d 

Sec. 6.2



Document frequency

 Rare terms are more informative than frequent terms
 Recall stop words

 Consider a term in the query that is rare in the collection 
(e.g., arachnocentric)

 A document containing this term is very likely to be 
relevant to the query arachnocentric

 → We want a high weight for rare terms like 
arachnocentric.

Sec. 6.2.1



Document frequency, 
continued

 Frequent terms are less informative than rare terms
 Consider a query term that is frequent in the collection 

(e.g., high, increase, line)
 A document containing such a term is more likely to be 

relevant than a document that doesn’t
 But it’s not a sure indicator of relevance.
 → For frequent terms, we want high positive weights for 

words like high, increase, and line
 But lower weights than for rare terms.
 We will use document frequency (df) to capture this.

Sec. 6.2.1



idf weight
 dft is the document frequency of t: the number of 

documents that contain t
 dft is an inverse measure of the informativeness of t
 dft   N

 We define the idf (inverse document frequency) of t by

 We use log (N/dft) instead of N/dft to “dampen” the 
effect of idf.

idf t= log 10 N /df t 

Sec. 6.2.1



idf example, suppose N = 1 
million

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df( log  idf 10 tt N



Effect of idf on ranking

 Does idf have an effect on ranking for one-term queries, 
like

 iPhone
 idf has no effect on ranking one term queries

 idf affects the ranking of documents for queries with 
at least two terms

 For the query capricious person, idf weighting makes 
occurrences of capricious count for much more in the 
final document ranking than occurrences of person.

23



Collection vs. Document 
frequency

 The collection frequency of t is the number of 
occurrences of t in the collection, counting multiple 
occurrences.

 Example:

 Which word is a better search term (and should get a 
higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1



tf-idf weighting

 The tf-idf weight of a term is the product of its tf 
weight and its idf weight.

 Best known weighting scheme in information retrieval
 Note: the “-” in tf-idf is a hyphen, not a minus sign!
 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a 
document

 Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt



Sec. 6.2.2



Final ranking of documents for 
a query

26

Score q , d =∑r∈q∩d
tf . idf t , d

Sec. 6.2.2



Binary → count → weight 
matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a 
real-valued vector of tf-idf weights ∈ R|V|

Sec. 6.3



  28

Scoring, Vector Space Model

 Ranked retrieval

 Scoring documents

 Weighting

 Vector space scoring



Documents as vectors

 So we have a |V|-dimensional vector space
 Terms are axes of the space
 Documents are points or vectors in this space
 Very high-dimensional: tens of millions of dimensions 

when you apply this to a web search engine
 These are very sparse vectors - most entries are zero.

Sec. 6.3



Queries as vectors
 Key idea 1: Do the same for queries: represent them as 

vectors in the space
 Key idea 2: Rank documents according to their 

proximity to the query in this space
 proximity = similarity of vectors
 proximity ≈ inverse of distance
 Recall: We do this because we want to get away from 

the you’re-either-in-or-out Boolean model.
 Instead: rank more relevant documents higher than less 

relevant documents

Sec. 6.3



Formalizing vector space 
proximity

 First cut: distance between two points
 ( = distance between the end points of the two 

vectors)
 Euclidean distance?
 Euclidean distance is a bad idea . . .
 . . . because Euclidean distance is large for vectors of 

different lengths.

Sec. 6.3



Why distance is a bad idea

The Euclidean 
distance between q

and d2 is large even 
though the

distribution of terms in 
the query q and the 
distribution of

terms in the document 
d2 are

very similar.

Sec. 6.3



Use angle instead of distance

 Thought experiment: take a document d and append it 
to itself. Call this document d′.

 “Semantically” d and d′ have the same content
 The Euclidean distance between the two documents 

can be quite large
 The angle between the two documents is 0, 

corresponding to maximal similarity.

 Key idea: Rank documents according to angle with 
query.

Sec. 6.3



From angles to cosines

 The following two notions are equivalent.
 Rank documents in decreasing order of the angle 

between query and document
 Rank documents in increasing order  of 

cosine(query,document)
 Cosine is a monotonically decreasing function for the 

interval [0o, 180o]

Sec. 6.3



From angles to cosines

 But how – and why – should we be computing cosines?

Sec. 6.3



Length normalization
 A vector can be (length-) normalized by dividing each of 

its components by its length – for this we use the L2 
norm:

 Dividing a vector by its L2 norm makes it a unit (length) 
vector (on surface of unit hypersphere)

 Effect on the two documents d and d′ (d appended to 
itself) from earlier slide: they have identical vectors after 
length-normalization.

 Long and short documents now have comparable 
weights


i ixx 2

2



Sec. 6.3



cosine(query,document)











V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos( 











Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3



Cosine for length-normalized 
vectors

 For length-normalized vectors, cosine similarity is simply 
the dot product (or scalar product):

                   for q, d length-normalized.

38

cos  q ,d =q · d=∑i=1

∣V ∣
q id i



Cosine similarity illustrated

39



Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are

the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?
Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.



3 documents example contd.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Sec. 6.3



Computing cosine scores

Sec. 6.3



  43

Speeding (Chap. 7)

 Speeding up vector space ranking



Computing the K largest 
cosines: selection vs. sorting

 Typically we want to retrieve the top K docs (in the 
cosine ranking for the query)

 not to totally order all docs in the collection
 Can we pick off docs with K highest cosines?
 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Sec. 7.1



Use heap for selecting top K
 Binary tree in which each node’s value > the values of 

children
 Takes 2J operations to construct, then each of K 

“winners” read off in 2log J steps.
 For J=1M, K=100, this is about 10% of the cost of 

sorting.

1

.9 .3

.8.3

.1

.1

Sec. 7.1



Bottlenecks

 Primary computational bottleneck in scoring: cosine 
computation

 Can we avoid all this computation?
 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K 
output docs

 Is this such a bad thing?

Sec. 7.1.1



Cosine similarity is only a proxy

 User has a task and a query formulation
 Cosine matches docs to query
 Thus cosine is anyway a proxy for user happiness
 If we get a list of K docs “close” to the top K by cosine 

measure, should be ok

Sec. 7.1.1



Generic approach

 Find a set A  of contenders, with K < |A| << N
 A does not necessarily contain the top K, but has 

many docs from among the top K
 Return the top K docs in A

 Think of A as pruning non-contenders
 The same approach is also used for other (non-cosine) 

scoring functions
 Will look at several schemes following this approach

Sec. 7.1.1



Index elimination

 Only consider docs containing at least one query term
 Take this further:

 Only consider high-idf query terms
 Only consider docs containing many query terms

Sec. 7.1.2



High-idf query terms only

 For a query such as catcher in the rye
 Only accumulate scores from catcher and rye
 Intuition: in and the contribute little to the scores and so 

don’t alter rank-ordering much
 Benefit:

 Postings of low-idf terms have many docs  these 
(many) docs get eliminated from set A of contenders

Sec. 7.1.2



Docs containing many query 
terms

 Any doc with at least one query term is a candidate for 
the top K output list

 For multi-term queries, only compute scores for docs 
containing several of the query terms

 Say, at least 3 out of 4
 Imposes a “soft conjunction” on queries seen on web 

search engines (early Google)
 Easy to implement in postings traversal

Sec. 7.1.2



3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2



Champion lists

 Precompute for each dictionary term t, the r docs of 
highest weight in t’s postings

 Call this the champion list for t
 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time
 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the 
champion list of some query term

 Pick the K top-scoring docs from amongst these

Sec. 7.1.3



Web Search:

Techniques, algorithms and Aplications

Basic Techniques 
for Web Search

German Rigau <german.rigau@ehu.es>

[Based on slides by Eneko Agirre … 
and Christopher Manning and Prabhakar Raghavan]

mailto:german.rigau@ehu.es

