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Natural Language Study & Processing

Study of Natural Language

I What kinds of things do people say? (Structure of language)

I What do these things say/ask/request about the world?
(Semantics, pragmatics, discourse)

I Traditional Linguistics assumes:
I People produce gramatical sentences. Open the radio
I People are monolingual adult speakers. (Learning children,

dialects, language changes, ...)
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Natural Language Study & Processing

Natural Language Processing

I Field of Computer Science devoted to create machines able to
communicate in human language (e.g HAL-9000).

I Human language has long been seen as the touchstone of
intelligent behaviour (e.g. Turing’s Test)

I NLP is said to be AI-Complete
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Statistical NLP

Broad multidisciplinary area

I Linguistics to provide models of language

I Psychology to provide models of cognitive processes

I Information theory to provide models of communication

I Mathematics & Statistics to provide tools to analyze and
acquire such models

I Computer Science to implement computable models
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History. Episode I - The beggining

1929 Zipf’s laws
1940-50 Empiricism is a prominent trend in linguistics. Zellig Harris

studies co-occurrences
1941 Mosteller & Williams establish authorship of the

pseudonymous Federalist Papers using word ocurrence
patterns

1942-45 World War II: A. Turing works on deciphering German codes
(i.e. translating to NL). Good-Turing estimation is developed

1948 C. Shannon develops Information Theory: probability of a
message being chosen, redundancy, error correction, ...

1949 W. Weaver proposes to address translation as a particular
case of cryptography

1957 J.R. Firth: “You shall know a word by the company it keeps”
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History. Episode II - Chomsky’s advent

1957 N. Chomsky (Harris’ student) claims that statistical
approaches will always suffer from lack of data, and that
language should be analyzed at a deeper level.

Colorless green ideas sleep furiously.
Furiously sleep ideas green colorless.

I Even nowadays, sparse data problem is indeed a serious
challenge for statistical NLP

I This change of perspective led to new lines of fundamental
multidisciplinary research: e.g. Chomsky hierachy, CFG an
NFAs are widely used in computer science and compiler
development, Lambek, Montague, and others used λ-Calculus
to model the semantics of NL
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History. Episode III - Resurrection

1970-80 The empiricists strike back
Speech recognition group at IBM sucessfully uses probabilistic
models and HMM. Soon they are applied to other NLP tasks.
Evidence from psychology shows than human learning may be
statistically-based.

1996 F. Jelinek: “Every time I fire a linguist, performance goes up”

1996 S. Abney: “In 1996, no one can profess to be a computational
linguist without a passing knowledge of statistical methods.
HMM’s are as de rigeur as LR tables, and anyone who cannot
at least use the terminology persuasively risks being mistaken
for kitchen help at the ACL banquet”

The future is interdiscipinariety
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Problems of the traditional approach (1)

I Language Acquisition:
Children try and discard syntax rules progressively

I Language Change:
Language changes along time (ale vs. eel, while as Adv vs.
Noun, near as Prep vs. Adj)

I Language Variation:
Dialect continuum (e.g. Inuit)

I Language is a collection of statistical distributions:
Weights for rules (phonetic, syntactic, etc) change when
learning, along time, between communities...
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Problems of the traditional approach (2)

I Structural ambiguity
Our company is training workers Parker saw Mary
Our problem is training workers The a are of I
Our product is training wheels

I Robustness: scaling up
Up from small and domain specific applications

I Practicallity: Time costly to build systems with good coverage

I Brittleness (metaphors, common sense)

I Instance of IA knowledge Representation problem: requires
learning
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How Statistics helps

I Disambiguation: Stochastic grammars. John walks

I Degrees of grammaticality

I Naturalness: strong tea, powerful car

I Structural preferences:
The emergency crews hate most is domestic violence

I Error tolerance:
We sleeps Thanks for all you help

I Learning on the fly:
One hectare is a hundred ares

The are a of I

I Lexical Acquisition.
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Zipf’s Laws (1929)

I Word frequency is inversely proportional to its rank
(speaker/hearer minimum effort) f ∼ 1/r

I Number of senses is proportional to frequency root m ∼
√

f

I Frequency of intervals between repetitions is inversely
proportional to the length of the interval F ∼ 1/I

I Random generated languages satisfy Zipf’s laws
I Frequency based approaches are hard, since most words are

rare
I Most common 5% words account for about 50% of a text
I 90% least common words account for less than 10% of the text
I Almost half of the words in a text occurr only once
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Usual Objections

Stochastic models are for engineers, not for scientists

I Approximation to handle information impractical to collect in
cases where initial conditions cannot be exactly determined
(e.g. as queue theory models dynamical systems).

I If the system is not deterministic (i.e. has emergent
properties), an stochastic account is more insightful than a
reductionistic approach (e.g. statistical mechanics)

Chomsky’s heritage: Statistics can not capture NL structure

I Techniques to estimate probabilities of unseen events.

I Chomsky’s criticisms can be applied to Finite State, N-gram
or Markov models, but not to all stochastic models.

Llúıs Padró Statistical Methods for Natural Language Processing



Introduction
Statistical Models

Statistical Modeling & Estimation
Maximum Entropy Modeling

Graphical Models
Clustering

References

What & Why
Statistics Foundations
Linguistic Foundations
Information Theory Foundations
Corpora

Conclusions

I Statistical methods are relevant to language acquisition,
change, variation, generation and comprehension.

I Pure algebraic methods are inadequate for understanding
many important properties of language, such as the measure
of goodness that allows to identify the correct parse among a
large candidate set.

I The focus of computational linguistics has been up to now on
technology, but the same techniques promise progress at
unanswered questions about the nature of language.
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Probability Theory

Probability Spaces

I Experiment

I Sample space Ω: discrete/continuous

I Partitions and Parts set P(Ω), 2Ω

I Event A ⊆ Ω. Event space: 2Ω

I Probability function (or distribution): P(A)
P : 2Ω → [0, 1]
P(Ω) = 1
P(
⋃∞

j=1 Aj) =
∑∞

j=1 P(Aj) (disjoint events)
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Conditional Probability and Independence

I Prior/posterior probability

P(A | B) =
P(A ∩ B)

P(B)
I Independence

P(A) = P(A | B) P(A ∩ B) = P(A)P(B);

I Conditional independence
P(A ∩ B | C ) = P(A | C )P(B | C )
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Conditional Probability and Independence. Example

English to French preposition translation:

P(a, b) dans en à sur au-cours-de pendant selon
in 4% 10% 15% 0% 8% 3% 0% 40%
on 6% 25% 10% 15% 0% 0% 4% 60%

total 10% 35% 25% 15% 8% 3% 4% 100%

Exercises:
P(in) =?
P(sur ∨ selon) =?
P(sur |in) =?
P(on|en ∨ dans) =?
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Bayes’ Theorem

[Bayes 1763]

P(B | A) =
P(B ∩ A)

P(A)
−→ P(B ∩ A) = P(B | A)P(A)

P(A | B) =
P(A ∩ B)

P(B)
−→ P(A ∩ B) = P(A | B)P(B)

P(B | A)P(A) = P(A | B)P(B)

P(B | A) =
P(A | B)P(B)

P(A)
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Bayes’ Theorem. Example

Parasitic Gaps: Uncommon phenomenon (1 in 100,000 sentences)

∗One can admire Napoleon without particularly liking .
Napoleon is one of those figures one can admire without particularly
liking .

I Our recognizer correctly detects a gap with p = 0.95, and
incorrectly detects a gap with p = 0.005

I Probability that there is a gap (G ) when the recognizer says
so (T ):

P(G | T ) =
P(T | G )P(G )

P(T )
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Bayes’ Theorem. Example

Parasitic Gaps: Uncommon phenomenon (1 in 100,000 sentences)

∗One can admire Napoleon without particularly liking .
Napoleon is one of those figures one can admire without particularly
liking .

I Our recognizer correctly detects a gap with p = 0.95, and
incorrectly detects a gap with p = 0.005

I Probability that there is a gap (G ) when the recognizer says
so (T ):

P(G | T ) =
P(T | G )P(G )

P(T ∩ G ) + P(T ∩ ¬G )
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Bayes’ Theorem. Example

Parasitic Gaps: Uncommon phenomenon (1 in 100,000 sentences)

∗One can admire Napoleon without particularly liking .
Napoleon is one of those figures one can admire without particularly
liking .

I Our recognizer correctly detects a gap with p = 0.95, and
incorrectly detects a gap with p = 0.005

I Probability that there is a gap (G ) when the recognizer says
so (T ):

P(G | T ) =
P(T | G )P(G )

P(T | G )P(G ) + P(T | ¬G )P(¬G )
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Bayes’ Theorem. Example

Parasitic Gaps: Uncommon phenomenon (1 in 100,000 sentences)

∗One can admire Napoleon without particularly liking .
Napoleon is one of those figures one can admire without particularly
liking .

I Our recognizer correctly detects a gap with p = 0.95, and
incorrectly detects a gap with p = 0.005

I Probability that there is a gap (G ) when the recognizer says
so (T ):

P(G | T ) =
0.95× 10−5

0.95× 10−5 + 0.05× 0.99999
= 0.002
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Random Variables: Basics

I Random variable: Function on a stochastic process.
X : Ω −→ R

I Continuous and discrete random variables.

I Probability mass (or density) function, Frequency function:
p(x) = P(X = x).
Discrete R.V.:

∑
x p(x) = 1

Continuous R.V:
∫∞
−∞ p(x)dx = 1

I Distribution function: F (x) = P(X ≤ x)

I Expectation and variance, standard deviation
E (X ) = µ =

∑
x xp(x)

VAR(X ) = σ2 = E ((X − E (X ))2) =
∑

x(x − µ)2p(x)
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Random Variables: Joint and Conditional
Distributions

I Joint probability mass function: p(x , y)
I Marginal distribution:

pX (x) =
∑

y p(x , y)
pY (y) =

∑
x p(x , y)

pX |Y (x | y) =
p(x , y)

pY (y)

Simplified Polynesian. Sequences of C-V syllabes: Two random
variables C,V

P(C,V) p t k
a 1/16 3/8 1/16 1/2
i 1/16 3/16 0 1/4
u 0 3/16 1/16 1/4

1/8 3/4 1/8

P(p | i) =?
P(a | t ∨ k) =?
P(a ∨ i | p) =?
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Determining P

I Relative frequency (MLE)
I Parametric estimation
I non-parametric (distribution-free) estimation

I Standard distributions. Discrete:
I Binomial (e.g. tagger accuracy)
I Multinomial (e.g. zero-gram PoS model)

I Standard distributions. Continuous:
I Normal (Gaussian distribution)
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Samples and Estimators

I Random samples

I Sample variables:

Sample mean: µ̄n =
1

n

∑
i=1

nxi

Sample variance: s2
n =

1

n − 1

∑
i=1

n(xi − µ̄n)2.

I Law of Large Numbers: as n increases, µ̄n and s2
n converge to

µ and σ2

I Estimators: Sample variables used to estimate real parameters.
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Finding good estimators: MLE

Maximum Likelihood Estimation (MLE)

I Choose the alternative that maximizes the probability of the
observed outcome.

I µ̄n is a MLE for E (X )

I s2
n is a MLE for σ2

I Data sparseness problem. Smoothing tecnhiques.

P(a, b) dans en à sur au-cours-de pendant selon
in 0.04 0.10 0.15 0 0.08 0.03 0 0.40
on 0.06 0.25 0.10 0.15 0 0 0.04 0.60

total 0.10 0.35 0.25 0.15 0.08 0.03 0.04 1.0
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Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

I Choose the alternative that maximizes the entropy of the
obtained distribution

Observations:
p(en ∨ à) = 0.6

P(a, b) dans en à sur au-cours-de pendant selon
in 0.04 0.15 0.15 0.04 0.04 0.04 0.04
on 0.04 0.15 0.15 0.04 0.04 0.04 0.04

total ︸ ︷︷ ︸
0.6

1.0
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Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

I Choose the alternative that maximizes the entropy of the
obtained distribution

Observations:
p(en ∨ à) = 0.6; p((en ∨ à) ∧ in) = 0.4

P(a, b) dans en à sur au-cours-de pendant selon
in 0.04 0.20 0.20 0.04 0.04 0.04 0.04
on 0.04 0.10 0.10 0.04 0.04 0.04 0.04

total ︸ ︷︷ ︸
0.6

1.0
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Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

I Choose the alternative that maximizes the entropy of the
obtained distribution

Observations:
p(en ∨ à) = 0.6; p((en ∨ à) ∧ in) = 0.4; p(in) = 0.5

P(a, b) dans en à sur au-cours-de pendant selon
in 0.02 0.20 0.20 0.02 0.02 0.02 0.02 0.5
on 0.06 0.10 0.10 0.06 0.06 0.06 0.06

total ︸ ︷︷ ︸
0.6

1.0
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Confidence Intervals

I Risk of error in estimation, risk of a biassed sample.

I Given a parameter γ, and two sample variables ν1 and ν2, the
value p = P(ν1 < γ < ν2) is the degree of confidence for the
interval [ν1, ν2]

Theorems and Properties:

I The sum of squares of n Normal RVs follows a χ2

I Thus, from s2
n definition,

(n − 1)s2
n

σ2
∼ χ2(n − 1)

I If X ∼ N(0, 1), and Y ∼ χ2(r), then
X√
Y /r

∼ t(r)

I etc.
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Confidence Intervals

Example: Ratio of nouns per verb in a text

I Sample variable Y: 1.8, 2.2, 1.1, 1.3, 1.6

I Sample mean µ̄n = 1.6; Sample variance s2
n = 0.18

I C.I. at 95% confidence degree, assuming known σ2 = 0.2

Ȳ ∼ N(µ, σ/
√

n);
Ȳ − µ
σ

√
n ∼ N(0, 1)
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Confidence Intervals

That is, we look for a symmetric interval x1, x2 such that:

P(x1 <
Ȳ − µ
σ

√
n < x2) = 0.95

which is:

P(−1.96 <
Ȳ − µ
σ

√
n < 1.96) = 0.95

so:
P(Ȳ − 1.96

σ√
n
< µ < Ȳ + 1.96

σ√
n

) = 0.95

Thus, the C.I. is:

Ȳ − 1.96
σ√
n
< µ < Ȳ + 1.96

σ√
n

=⇒ [1.21, 1.99]
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Confidence Intervals

Example: Ratio of nouns per verb in a text

I Sample variable Y: 1.8, 2.2, 1.1, 1.3, 1.6

I Sample mean µ̄n = 1.6; Sample variance s2
n = 0.18

I C.I. at 95% confidence degree, unknown σ2

Ȳ − µ
σ

√
n ∼ N(0, 1);

(n − 1)s2
n

σ2
∼ χ2(n − 1)

Thus,
Ȳ − µ

sn

√
n ∼ t(n − 1)
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Confidence Intervals

That is, we look for a symmetric interval x1, x2 such that:

P(x1 <
Ȳ − µ

sn

√
n < x2) = 0.95

which is:

P(−2.57 <
Ȳ − µ

sn

√
n < 2.57) = 0.95

so:
P(Ȳ − 2.57

sn√
n
< µ < Ȳ + 2.57

sn√
n

) = 0.95

Thus, the C.I. is:

Ȳ − 2.57
sn√

n
< µ < Ȳ + 2.57

sn√
n

=⇒ [1.11, 2.09]
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Hypothesis Testing

I Use the same idea of C.I. to proof/reject hypothesis: We
assume the truth of a null hypothesis H0, that we want to
prove false. Then, we compute the probability of the observed
sample under that assumption. If it is below certain threshold,
we discard the null hypothesis with confidence degree p.

I If we cannot reject H0, it doesn’t mean it’s true. Only that we
do not have enough evidence to discard it.
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Hypothesis Testing

Example: Given one PoS tagger, check if its accuracy is over 96%
Estimated accuracy on a corpus of 1, 000 words: T̄ = 0.97
The accuracy of a tagger is T̄ ∼ bin(n, p).
For large values of n, we can assume:

(T̄ − p)
√

n√
p(1− p)

∼ N(0, 1)

Our null hypothesis is H0 : T ≤ 0.96, we’ll try to reject it,
computing the probability of the observation under this hypothesis.
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Hypothesis Testing

That is, we look for a value x such that:

P(
(T̄ − p)

√
n√

p(1− p)
< x) = 0.95

which is: x = 1.64
So:

P(T̄ < p + 1.64

√
p(1− p)

n
) = 0.95

under our H0, p = 0.96:

P(T̄ < 0.96 + 1.64

√
0.96(1− 0.96)

1, 000
) = P(T̄ < 0.9701) = 0.95

We cannot reject H0 (we cannot state that our tagger performs
better than 96%)
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Hypothesis test on two samples

Example: Given two PoS taggers, check if T1 is better than T2

Accuracy on a corpus of 1, 000 words: T̄1 = 0.97; T̄2 = 0.96
H0 : T1 = T2

Obs ok ¬ok

T1 970 30 1,000
T2 960 40 1,000

1,930 70 2,000

Exp ok ¬ok

T1 965 35 1,000
T2 965 35 1,000

1,930 70 2,000

χ2 =
∑

i

(Oi − Ei )
2

Ei
= 1.48

With 1 d.f. and at 95% confidence, χ2 = 3.84
Since the obtained value is lower, we cannot reject H0

Llúıs Padró Statistical Methods for Natural Language Processing



Introduction
Statistical Models

Statistical Modeling & Estimation
Maximum Entropy Modeling

Graphical Models
Clustering

References

What & Why
Statistics Foundations
Linguistic Foundations
Information Theory Foundations
Corpora

Introduction
What & Why
Statistics Foundations

Basic Probability Theory
Random Variables & Estimation
Confidence Intervals and Hypothesis Testing

Linguistic Foundations
Information Theory Foundations
Corpora
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Morphology

Morphology

I Deals with the form of the words
I Morphological processes

I Inflection: [prefixes] + root + suffixes
(Root, lemma and form)

I Derivation:
Change of category

I Compounds

Grammatical categories, Parts of Speech

I Open categories and Closed (or functional) categories

I Lexicon

I PoS tags
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Main Parts of Speech (1)

I Noun
I Common noun, proper noun
I Gender, number, case

I Pronoun:
I Nominative, accusative, possessive, reflexive, interrogative,

partitive, ...
I Anaphora

I Determiner
I Articles, demonstratives, quantifiers, ...

I Adjective
I Atributive or adnominal, comparative, superlative, ...
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Main Parts of Speech (2)

I Verbs
I infinitive, gerund, participle
I number, person, mode, tense (present, past, past perfect,

present perfect, future, ...)
I irregular verbs
I modal verbs, auxiliary verbs.

I Adverb
I place, time, manner, degree (qualifiers)
I Derived / lexical

I Preposition (particles)
I Conjunctions

I Coordinating, subordinating

I Agreement
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Syntax and Grammars

I Phrase Structure
I Word order
I Syntagma, phrase, constituent

I NP, VP, AP, head, relative clause, ...

I Grammars
I Free word order languages. Syntax vs. lexicon
I Rewrite rules. Context free grammars (CFG):

I Terminals, no terminals, parse trees...
I Recursivity

I Bracketing
I Non-local dependencies

The women who found the wallet were given a reward.
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Structural Ambiguity

I Parse tree → syntactic ambiguity
I PP-attachment:

The children ate the cake with a spoon.
The children ate the cake with a candle.

I Garden paths
The horse raced past the barn fell.

I Ungrammatical sentences
∗slept children the.

I Grammatical sentences
Colorless green ideas sleep furiously.
The cat barked.
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Semantics

I Arguments & Adjuncts
I Semantic roles: Agent, patient, recipient, instrument, goal
I Grammatical: Subject, object, indirect object, ...
I Adjuncts: time, place, manner, ...
I Active/passive sentences.

I Subcategorization
I Transitive / intransitive verbs
I Required/optional Arguments
I Subcategorization (or diathesis) frames

I Selectional restrictions
I The <??> barks
I John eats <??>
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Lexical Semantics

I Relationships between meanings
I Hypernymy - hiponymy
I Sinonymy - antonymy
I Meronymy - holonymy

I Lexical ambiguity
I Homonymy (bank-bank, bass-bass)
I Homophony (bank-bank, for-four)
I Polysemy (branch-branch)

I Collocations
I white hair white wine white skin

I Idioms

I To pull one’s leg To kick the bucket

I Anaphora resolution
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Entropy (1)

I Entropy

H(p) = H(X ) = −
∑
x∈X

p(x) log p(x)

H(X ) =
∑
x∈X

p(x) log
1

p(x)
= E (log

1

p(X )
)

I Example: Simplified Polynesian

p a
1/8 1/4

k i
1/8 1/8

t u
1/4 1/8

H(P) = −
∑

i∈{p,t,k,a,i,u}

P(i) log P(i) = 2.5

p t k a i u
100 00 101 01 110 111
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Entropy (2)

I Joint Entropy

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x , y)

I Conditional Entropy

H(X | Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x | y)

I Chain rule:
H(X ,Y ) = H(X ) + H(Y | X )

H(X1, . . . ,Xn) = H(X1) + H(X2 | X1) + . . .+ H(Xn | X 1, . . . ,Xn−1)
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Simplified Polynesian Revisited

Sequence of CV syllabes. Two random variables C,V

P(C,V) p t k
a 1/16 3/8 1/16 1/2
i 1/16 3/16 0 1/4
u 0 3/16 1/16 1/4

1/8 3/4 1/8

p t k
1/16 3/8 1/16

a i u
1/4 1/8 1/8

H(C ) = −
∑

c∈{p,t,k}

P(c) log P(c) = −2
1

8
log

1

8
− 3

4
log

3

4
= 1.061

H(V |C ) = −
∑

c∈{p,t,k}

P(C = c)H(V |C = c) =

= 1
8 H( 1

2 ,
1
2 , 0) + 3

4 H( 1
2 ,

1
4 ,

1
4 ) + 1

8 H( 1
2 , 0,

1
2 ) = 1.375

H(C ,V ) = H(C ) + H(V |C ) = 2.44 bits/syllabe = 1.22 bits/char
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Mutual Information

I Entropy chain rule

H(X ,Y ) = H(X ) + H(Y | X ) = H(Y ) + H(X | Y )

thus, H(X )− H(X | Y ) = H(Y )− H(Y | X ), which is
defined as I (X ,Y ).

I (X ,Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)

I Pointwise Mutual Information

I (x , y) = log
p(x , y)

p(x)p(y)
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Entropy of English

I n-gram models (Markov chains)

I Markov assumption (Prob. of a token depends only on the
previous k)

I Entropy of English

Model Cross entropy

0th order 4.76 (log 27)
1st order 4.03
2nd order 2.8
Shannon’s experiment 1.34
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Corpus Linguistics. Corpora

I Corpus: Vast sample of language occurrences
I Utility: Corpus linguistics, Statistical NLP.
I Textual corpora, speech corpora (acoustic/transcript)
I Sources

I LDC, ELRA, ICAME, OTA, etc. (annotated)
I Newspapers, magazines (raw)

I Criteria
I Language
I Genre
I Representativeness. Balanced corpora

I Formatting
I Markup. Plain vs. wysiwyg
I Headers, tables, figures... OCR
I Uppercase/lowercase. Proper nouns, Titles...
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Marked up corpora

I Tokens

I Sentences
I Paragraphs

I Headers, titles, abstracts, ...

I SGML (Standard Generalized Markup Language).

I TEI directives (Text Encoding Initiative)

I XML (eXtensible Markup Language)

I DTD (Document Type Definition)
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Marking up Linguistic Information

I PoS Tags.
I Tag set: Brown, Penn Treebank, EAGLES, self-designed

I Lemmas, stems (IR)
I Syntax

I Phrase structure, attachments, dependences, ...

I Semantics
I Word senses, semantic roles, anaphora, correference...

I Markup internal/external to the document
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Markup exploitation

I Corpus Linguistics: Evidence for linguistic research.
I NLP

I Evidence for statistical model estimation
I Testbench for automatic systems validation
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Statistical
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Statistical
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Llúıs Padró Statistical Methods for Natural Language Processing



Introduction
Statistical Models

Statistical Modeling & Estimation
Maximum Entropy Modeling

Graphical Models
Clustering

References

Goal
Prediction & Similarity Models

Statistical Models
Goal
Prediction & Similarity Models
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Prediction Models & Similarity Models

I Prediction Models: Able to predict probabilities of future
events, knowing past and present.

I Similarity Models: Able to compute similarities between
objects (may predict, too).

I Compare feature-vector/feature-set represented objects.
I Compare distribution-vector represented objects
I Used to group objects (clustering, data analysis, pattern

discovery, ...)
I If objects are “present and past” situations, computing

similarities may be used as a prediction (memory-based ML
techniques).
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Prediction Models

Example: Noisy Channel Model (Shannon 48)

Channel P(o|i) Output
Input
P(i)

NLP Applications

Appl. Input Output p(i) p(o | i)
MT L word M word p(L) Translation

sequence sequence model

OCR Actual text Text with prob. of model of
mistakes language text OCR errors

PoS PoS tags word prob. of PoS p(w | t)
tagging sequence sequence sequence

Speech word speech prob. of word acoustic
recog. sequence signal sequence model
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Similarity Models

Example: Document representation

I Documents are represented as vectors in a high dimensional
<N space.

I Dimensions are word forms, lemmas, NEs, ...

I Values may be either binary or real–valued (count, frequency,
...)

~x =

 x1

...
xN

 ~xT = [x1 . . . xN ] |~x | =

√√√√ N∑
i=1

x2
i
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Inference & Modeling

I Inferring distributions from data
I Finding good estimators
I Combining estimators.

I Language Modeling (Shannon game)
I Predictions based on past behaviour

I Target / classification features → Independence assumptions
I Equivalence classes (bins). Granularity: discrimination vs.

statistical reliability
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N-gram models

I Predicting the next word in a sequence, given the history or
context. P(wn | w1, . . . ,wn−1)

I Markov assumption: Only local context (of size n − 1) is
taken into account. P(wi | wi−n+1, . . . ,wi−1)

I bigrams, trigrams, four-grams (n = 2, 3, 4).
Sue swallowed the large green <?>

I Parameter estimation (number of equivalence classes)

I Parameter reduction via stemming, semantic classes, PoS, ...
Model Parameters

bigram 20, 000× 19, 999 ' 400× 106

trigram 20, 0002 × 19, 999 ' 8× 1012

four-gram 20, 0003 × 19, 999 ' 1, 600× 1015

Language model sizes for a 20,000 words vocabulary
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Maximum Likelihood Estimation (MLE)

Estimate the probability of the target feature based on observed
data. The prediction task can be reduced to having good
estimations of the n-gram distribution:

P(wn | w1, . . . ,wn−1) =
P(w1, . . . ,wn)

P(w1, . . . ,wn−1)

I MLE (Maximum Likelihood Estimation)

PMLE (w1, . . . ,wn) = C(w1,...,wn)
N

PMLE (wn | w1, . . . ,wn−1) = C(w1,...,wn)
C(w1,...,wn−1)

I No probability mass for unseen events
I Unsuitable for NLP
I Data sparseness, Zipf’s Law
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Smoothing (1)

I Laplace’s Law (adding one)

PLAP(w1, . . . ,wn) =
C (w1, . . . ,wn) + 1

N + B
I For large values of B too much probability mass is assigned to

unseen events

I Lidstone’s Law

PLID(w1, . . . ,wn) =
C (w1, . . . ,wn) + λ

N + Bλ
I Usually λ = 0.5, Expected Likelihood Estimation.
I For µ = N/(N + Bλ), we get linear interpolation between

MLE and uniform prior,

PLID(w1, . . . ,wn) = µ
C (w1, . . . ,wn)

N
+ (1− µ)

1

B

Llúıs Padró Statistical Methods for Natural Language Processing



Introduction
Statistical Models

Statistical Modeling & Estimation
Maximum Entropy Modeling

Graphical Models
Clustering

References

Inference & Modeling
Smoothing
Combining Estimators
Model Validation

Smoothing (2)

I Held Out Estimator
I Divide the train corpus in two parts (A and B).
I Let T AB

r =
∑
{α:CA(α)=r} CB(α)

I Let r = CA(w1, . . . ,wn)

PHO(w1, . . . ,wn) =
T AB

r

NA
r N

I Cross Validation (deleted estimation)

PDEL(w1, . . . ,wn) =
T AB

r + T BA
r

(NA
r + NB

r )N
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Smoothing (3)

I Absolute Discounting

PABS(w1, . . . ,wn) =

{
(r − δ)/N if r > 0
(B−N0)δ

N0N
otherwise

I Linear Discounting

PLIN(w1, . . . ,wn) =

{
(1− α)r/N if r > 0
α/N0 otherwise
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Smoothing (4)

I Good-Turing Estimation
I Let r = C (w1, . . . ,wn), observed frequency
I Let r∗ = (r + 1)E(Nr+1)

E(Nr ) , adjusted frequency ( ≈ (r + 1)Nr+1

Nr
)

I In practice r∗ = (r + 1)E(Nr+1)
E(Nr ) , where S(r) = Smoothed values

for E (Nr ).
I Reserved mass: N1

N

PGT (w1, . . . ,wn) =

{
r∗

N if r > 0
1−

P∞
r=1 Nr

r∗
N

N0
≈ N1

N0N
otherwise
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Combining Estimators

I Simple Linear Interpolation
PLI (wn | wn−2,wn−1) =
= λ1P1(wn) + λ2P2(wn | wn−1) + λ3P3(wn | wn−2,wn−1)

I Katz’s Backing-off

PBO(wi | wi−n+1, . . . ,wi−1) =

8>>>><>>>>:
(1− dwi−n+1,...,wi−1 )

C(wi−n+1, . . . ,wi )

C(wi−n+1, . . . ,wi−1)
if C(wi−n+1, . . . ,wi ) > 0

αwi−n+1,...,wi−1PBO(wi | wi−n+2, . . . ,wi−1)
otherwise

I General Linear Interpolation

PLI (wn | h) =
k∑

i=1

λi (h)Pi (w | h)
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Surprise Measures

I Entropy measures uncertainty: If a model captures more of
the structure of the language, its entropy will be lower.

I Pointwise Entropy: H(w | h) = − log m(w | h)

I Cross Entropy:

H(X1n,m) = − lim
n→∞

1

n

∑
x1n

p(x1n) log m(x1n) =

= − lim
n→∞

1

n
log m(x1n) ≈ −1

n
log m(x1n)

I Perplexity:

Perplexity(x1n,m) = 2H(x1n,m) = m(x1n)−
1
n
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Train and test data

I Training data

I Overtraining, cross entropy

I Test data

I Splitting training data: Held out or Validation data.

I Splitting testing data: Development test or Tuning data

I Mean and variance estimation (cross-validation)

I System comparison: χ2, t, bayesian decision theory, . . .
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Modeling Classification Problems

I Classification problems: Estimate probability that a class a
appears with –or given– an event b: P(a, b); P(a | b)

I ML Estimation problems
I Corpus sparseness
I Smoothing
I Combining evidence

I Independence assumptions
I Interpolation
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Maximum Entropy Modeling

I Maximum Entropy: alternative estimation technique.

I Able to deal with different kinds of evidence
I ME principle:

I Do not assume anything about non-observed events.
I Find the most uniform (maximum entropy) probability

distribution that matches the observations.
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Simple Example

I Observed facts are constraints for the desired model p.

I Observed fact p(x , 0) + p(y , 0) = 0.6 is implemented as a
constraint on the expectation of feature f1 of model p. That
is: Epf1 = 0.6 where
Epf1 =

∑
a∈{x ,y},b∈{0,1} p(a, b)f1(a, b)

f1(a, b) =

{
1 if b = 0
0 otherwise

I Most uncertain way to satisfy constraints

P(a, b) 0 1 P(a, b) 0 1 P(a, b) 0 1
x ? ? x 0.5 0.1 x 0.3 0.2
y ? ? y 0.1 0.3 y 0.3 0.2

total 0.6 1.0 total 0.6 1.0 total 0.6 1.0
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Probability Model

I Infinite probability models consistent with observations:

P = {p | Epfj = Eepfj , j = 1 . . . k}

Eepfj =
∑
a,b

p̃(a, b)fj(a, b)

Epfj =
∑
a,b

p̃(b)p(a | b)fj(a, b)

I Maximum entropy model

p∗ = arg max
p∈P

H(p)

H(p) = −
∑
a,b

p̃(b)p(a | b) log p(a | b)
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Example 2

Maximum entropy model for in translation to French

I No constraints

P(a, b) dans en à au-cours-de pendant
0.2 0.2 0.2 0.2 0.2

total 1.0

I Subject to constraint: p(dans) + p(en) = 0.3

P(a, b) dans en à au-cours-de pendant
0.15 0.15 0.233 0.233 0.233

total 0.3 1.0

I Constraints: p(dans) + p(en) = 0.3 and p(dans) + p(à) = 0.5

...Not so easy !
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Parameter estimation

I Exponential models. (Lagrange multipliers optimization)

p(a | b) = 1
Z(b)

∏k
j=1 α

fj (a,b)
j αj > 0

Z (b) =
∑

a

∏k
i=1 α

fi (a,b)
i

I also formuled as
p(a | b) = 1

Z(b) exp(
∑k

j=1 λj fj(a, b))
λi = lnαi

I Each model parameter models the influence of a feature.
I Optimal model parameters:

I GIS. Generalized Iterative Scaling(Darroch & Ratcliff 72)
I IIS. Improved Iterative Scaling (Della Pietra et al. 96)
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Improved Iterative Scaling (IIS)

Input: Feature functions f1 . . . fn, empirical distribution p̃(a, b)

Output: λ∗i parameters for optimal model p∗

Start with λi = 0 for all i ∈ {1 . . . n}
Repeat

For each i ∈ {1 . . . n} do
let ∆λi be the solution to∑

a,b p̃(b)p(a | b)fi (a, b) exp(∆λi
∑n

j=1 fj(a, b)) = p̃(fi )

λi ← λi + ∆λi

end for
Until all λi have converged
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Application to NLP Tasks

I Speech processing (Rosenfeld 94)

I Machine Translation (Brown et al 90)

I Morphology (Della Pietra et al. 95)

I Clause boundary detection (Reynar & Ratnaparkhi 97)

I PP-attachment (Ratnaparkhi et al 94)

I PoS Tagging (Ratnaparkhi 96, Black et al 99)

I Partial Parsing (Skut & Brants 98)

I Full Parsing (Ratnaparkhi 97, Ratnaparkhi 99)

I Text Categorization (Nigam et al 99)
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PoS Tagging (Ratnaparkhi 96)

I Probabilistic model over H × T

hi = (wi ,wi+1,wi+2,wi−1,wi−2, ti−1, ti−2)

fj(hi , t) =

{
1 if suffix(wi ) =′ ing ′ ∧ t = VBG
0 otherwise

I Compute p∗(h, t) using GIS
I Disambiguation algorithm: beam search

p(t | h) =
p(h, t)∑

t′∈T p(h, t ′)

p(t1 . . . tn | w1 . . .wn) =
n∏

i=1

p(ti | hi )
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Text Categorization (Nigam et al 99)

I Probabilistic model over W × C

d = (w1,w2, . . . ,wN)

fw ,c ′(d , c) =

{
N(d ,w)
N(d) if c = c ′

0 otherwise

I Compute p∗(d , c) using IIS

I Disambiguation algorithm: Select class with highest

P(c |d) =
1

Z (d)
exp(

∑
i

λi fi (d , c))
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MEM Summary

I Advantages
I Teoretically well founded
I Enables combination of random context features
I Better probabilistic models than MLE (no smoothing needed)
I General approach (features, events and classes)

I Disadvantages
I Implicit probabilistic model (joint or conditional probability

distribution obtained from model parameters).
I High computational cost of GIS and IIS.
I Overfitting in some cases.
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Types of Graphical Model

I Generative models:
I Bayes rule ⇒ independence assumptions.
I Able to generate data.

I Conditional models:
I No independence assumptions.
I Unable to generate data.

Most algorithms of both kinds make assumptions about the nature
of the data-generating process, predefining a fixed model structure
and only acquiring from data the distributional information.
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Examples of Graphical Models

I Generative models:
I HMM (Rabiner 1990), IOHMM (Bengio 1996).
I Non-graphical: Stochastic Grammars (Lary & Young 1990)
I Automata-learning algorithms: No assumptions about model

structure. VLMM (Rissanen 1983), Suffix Trees (Galil &
Giancarlo 1988), CSSR (Shalizi & Shalizi 2004).

I Conditional models:
I discriminative MM (Bottou 1991), MEMM (McCallum et al.

2000), CRF (Lafferty et al. 2001).
I Non-graphical: Maximum Entropy Models (Berger et al 1996).

See (M. Padró 2008) for a brief survey and reference source.
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Markov Models

I X = (X1, . . . ,XT ) sequence of random variables taking values
in s = {s1, . . . , sN}

I Markov Properties
I Limited Horizon:

P(Xt+1 = sk | X1, . . . ,Xt) = P(Xt+1 = sk | Xt)
I Time Invariant (Stationary):

P(Xt+1 = sk | Xt) = P(X2 = sk | X1)

I Transition matrix: aij = P(Xt+1 = sj | Xt = si )

I Initial probabilities: πi = P(X1 = si )

I Sequence probability
P(X1, ..,XT ) = P(X1)P(X2 | X1)P(X3 | X1X2) · · ·P(XT | X1..XT−1) =

= P(X1)P(X2 | X1)P(X3 | X2) · · ·P(XT | XT−1) = πX1

QT−1
t=1 aXtXt+1
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MM Example
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Hidden Markov Models (HMM)

I States and Observations

I Emission Probability:
P(Ot = k | Xt = si ,Xt+1 = sj) = bijk

I Used when underlying events probabilistically generate surface
events

I PoS tagging (hidden states: PoS tags, observations: words)

I Trainable with unannotated data. Expectation Maximization
(EM) algorithm.

I arc-emission vs state-emission
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Example: PoS Tagging

0.3
0.4

0.6

0.4

0.6

0.3

0.4

1.01.0

Adj

N V<FF> Dt

Emission
probabilities . el la gato niña come corre pescado fresco pequeña grande

<FF> 1.0
Dt 0.6 0.4
N 0.6 0.1 0.3
V 0.7 0.3

Adj 0.3 0.3 0.4
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HMM Fundamental Questions

1. Observation probability (decoding): Given a model
µ = (A,B, π), how we do efficiently compute how likely is a
certain observation ? That is, P(O | µ)

2. Classification: Given an observed sequence O and a model µ,
how do we choose the state sequence (X1, . . . ,XT+1) that
best explains the observations?

3. Parameter estimation: Given an observed sequence O and a
space of possible models, each with different parameters
(A,B, π), how do we find the model that best explains the
observed data
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Question 1. Observation probability

I Let O = (o1, . . . , oT ) observation sequence.
For any state sequence X = (X1, . . . ,XT ), we have:
P(O | X , µ) =

∏T
t=1 P(ot | Xt ,Xt+1, µ) =

= bX1X2o1bX2X3o2 · · · bXT XT+1oT

P(X | µ) = πX1aX1X2aX2X3 · · · aXT XT+1

Since P(O,X | µ) = P(O | X , µ)P(X | µ), thus
P(O | µ) =

∑
X P(O | X , µ)P(X | µ) =

=
∑

X1···XT+1
πX1

∏T
t=1 aXtXt+1bXtXt+1ot

Complexity: O(TNT )

I Dynammic Programming. Trellis, lattices.
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Trellis

State

Time t

T+1321

N
S

3S

2S

1S

Fully connected HMM
where one can move to
any state to any oth-
er at each step. A
node {si , t} of the trel-
lis stores information
about state sequences
which include Xt = i .
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Forward & Backward (1)

I Forward procedure: αi (t) = P(o1o2 · · · ot−1,Xt = i | µ)

1. Inicialization: αi (1) = πi 1 ≤ i ≤ N

2. Induction: αj(t + 1) =
∑N

i=1 αi (t)aijbijot

1 ≤ t ≤ T , 1 ≤ j ≤ N

3. Total: P(O | µ) =
∑N

i=1 αi (T + 1)

Complexity: O(N2T )
I Backward procedure: βi (t) = P(ot · · · oT | Xt = i , µ)

1. Inicialization: βi (T + 1) = 1 1 ≤ i ≤ N

2. Induction: βi (t) =
∑N

j=1 aijbijotβj(t + 1)
1 ≤ t ≤ T , 1 ≤ i ≤ N

3. Total: P(O | µ) =
∑N

i=1 πiβi (1)
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Forward & Backward (2)

I Combination
P(O,Xt = i | µ) =

= P(o1 · · · ot−1,Xt = i , ot · · · oT | µ) = αi (t)βi (t)

thus, P(O | µ) =
∑N

i=1 αi (t)βi (t) 1 ≤ t ≤ T + 1
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Forward calculations

t+1t

j
α (t+1)

jS

(t)
N
α

NS

3
α (t)

3S

2
α (t)

2S

1
α (t)

1S

t1jo
ba1j

t2jo
ba2j

t3jo
ba3j

tNjo
baNj

Closeup of the computation of forward proba-
bilities at one node. The forward probability
αj(t + 1) is calculated by summing the product
of the probabilities on each incoming arc with
the forward probability of the originating node.
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Question 2. Best state sequence

I Most likely path.
I Compute arg maxX P(X | O, µ)

I For a given O, compute arg maxX P(X ,O | µ)
I Let δj(t) = maxX1···Xt−1 P(X1 · · ·Xt−1, o1 · · · ot−1,Xt = j |µ)

I Viterbi algorithm

1. Initialization. δj(1) = πj 1 ≤ j ≤ N

2. Induction. δj(t + 1) = max1≤i≤N δi (t)aijbijot 1 ≤ j ≤ N

3. Store backtrace. ψj(t + 1) = arg max1≤i≤N δi (t)aijbijot 1 ≤ j ≤ N
4. Termination path readout (backwards)

4.1 X̂T+1 = arg max1≤i≤N δi (T + 1)
4.2 X̂t = ψX̂t+1

(t + 1)

4.3 P(X̂ ) = max1≤i≤N δi (T + 1)
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Question 3. Parameter Estimation

I Obtain model parameters µ = (A,B, π) given observation:
arg maxµ P(Otrain | µ)

I Baum-Welch (Forward-Backward) algorithm. Iterative hill-climbing.
Special case of Expectation Maximization.

I Let pt(i , j) =

= P(Xt = i ,Xt+1 = j | O, µ) =
P(Xt = i ,Xt+1 = j ,O | µ)

P(O | µ)
=

=
αi (t)aijbijotβj(t + 1)∑N

m=1 αm(t)βm(t)
=

αi (t)aijbijotβj(t + 1)∑N
m=1

∑N
n=1 αm(t)amnbmnotβn(t + 1)

I Let γi (t) =
∑N

j=1 pt(i , j), thus∑T
t=1 γi (t) = expected # of transitions from state i in O.∑T
t=1 pt(i , j) = expected # of transitions from state i to j in O.
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Arc probability

t+1t+1tt-1
j (t+1)β(t)jα

jSiS
tijo

baij

The probability of traversing an arc. Given an observation sequence and a

model, we can work out the probability that the Markov process went from

state si to sj at time t.
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Reestimation

I Iterative reestimation
π̂i = γi (1)

âij =

∑T
t=1 pt(i , j)∑T
t=1 γi (t)

b̂ijk =

∑
{t:ot=k,1≤t≤T} pt(i , j)∑T

t=1 pt(i , j)

I EM Property: P(O | µ̂) ≥ P(O | µ)

I Iterative improving. Local maxima
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Clustering

I Partition a set of objects into clusters.

I Objects: features and values

I Similarity measure
I Utilities:

I Exploratory Data Analysis (EDA).
I Generalization (learning). Ex: on Monday, on Sunday, ? Friday

I Supervised vs unsupervised classification
I Object assignment to clusters

I Hard. one cluster per object.
I Soft. distribution P(ci | xj). Degree of membership.
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Clustering

I Produced structures
I Hierarchical (set of clusters + relationships)

I Good for detailed data analysis
I Provides more information
I Less efficient
I No single best algorithm

I Flat / Non-hierarchical (set of clusters)
I Preferable if efficiency is required or large data sets
I K-means: Simple method, sufficient starting point.
I K-means assumes euclidean space, if is not the case, EM may

be used.

I Cluster representative
I Centroid −→µ = 1

|c|
∑
−→x ∈c
−→x
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The Concept of Similarity

I Similarity, proximity, affinity, distance, difference, divergence
I We use distance when metric properties hold:

I d(x , x) = 0
I d(x , y) ≥ 0 when x 6= y
I d(x , y) = d(y , x) (simmetry)
I d(x , z) ≤ d(x , y) + d(y , z) (triangular inequation)

I We use similarity in the general case
I Function: sim : A× B → S (where S is often [0, 1])
I Homogeneous: sim : A× A→ S (e.g. word-to-word)
I Heterogeneous: sim : A× B → S (e.g. word-to-document)
I Not necessarily symmetric, or holding triangular inequation.
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The Concept of Similarity

I If A is a metric space, the distance in A may be used.

I Deuclidean(~x , ~y) = |~x − ~y | =

√∑
i

(xi − yi )2

I D(d i , d j) =

√√√√ N∑
k=1

(d i
k − d j

k)2

I Similarity and distance
I simD(A,B) = 1

1+D(A,B)
I monotonic: min{sim(x , y), sim(x , z)} ≥ sim(x , y ∪ z)
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Applications

I Clustering, case-based reasoning, IR, ...

I Discovering related words - Distributional similarity

I Resolving syntactic ambiguity - Taxonomic similarity

I Acquiring selectional restrictions
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Relevant Information

I Content (information about compared units)
I Words: form, morphology, PoS, ...
I Senses: synset, topic, domain, ...
I Syntax: parse trees, syntactic roles, ...
I Documents: words, collocations, NEs, ...

I Context (information about the situation in which simmilarity
is computed)

I Window–based vs. Syntactic–based

I External Knowledge
I Monolingual/bilingual dictionaries, ontologies, corpora
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Vectorial methods (1)

I L1 norm, Manhattan distance, taxi-cab distance, city-block
distance

L1(~x , ~y) =
N∑

i=1

|xi − yi |

I L2 norm, Euclidean distance

L2(~x , ~y) = |~x − ~y | =

√√√√ N∑
i=1

(xi − yi )2

I Cosine distance

cos(~x , ~y) =
~x · ~y
|~x | · |~y |

=

∑
i xiyi√∑

i x2
i ·
√

sumiy 2
i
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Vectorial methods (2)

I L1 and L2 norms are particular cases of Minkowsky measure

Dminkowsky (~x , ~y) = Lr (~x , ~y) =

(
N∑

i=1

(xi − yi )
r

) 1
r

I Camberra distance

Dcamberra(~x , ~y) =
N∑

i=1

|xi − yi |
|xi + yi |

I Chebychev distance

Dchebychev (~x , ~y) =
N

max
i=1
|xi − yi |
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Set-oriented methods (3): Binary–valued vectors
seen as sets

I Matching coefficient. Dmc(X ,Y ) = |X ∩ Y |

I Dice. Ddice(X ,Y ) =
2 · |X ∩ Y |
|X |+ |Y |

I Jaccard. Djaccard(X ,Y ) =
|X ∩ Y |
|X | ∪ |Y |

I Overlap. Doverlap(X ,Y ) =
|X ∩ Y |

min(|X |, |Y |)

I Cosine. cos(X ,Y ) =
|X ∩ Y |√
|X | × |Y |
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Set-oriented methods (4): Agreement contingency
table

Object i
1 0

Object j
1 a b a + b
0 c d c + d

a + c b + d p

I Matching coefficient. Dmc(i , j) =
a + d

p

I Jaccard. Djaccard(X ,Y ) =
a

a + b + c
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Distributional Similarity

I Particular case of vectorial representation where attributes are
probability distributions

~xT = [x1 . . . xN ] such that ∀i , 0 ≤ xi ≤ 1 and
N∑

i=1

xi = 1

I Kullback-Leibler Divergence (Relative Entropy)

D(q||r) =
∑
y∈Y

q(y) log
q(y)

r(y)
(non symmetrical)

I Mutual Information

I (A,B) = D(h||f · g) =
∑
a∈A

∑
b∈B

h(a, b) log
h(a, b)

f (a) · g(b)

(KL-divergence between joint and product distribution)

Llúıs Padró Statistical Methods for Natural Language Processing



Introduction
Statistical Models

Statistical Modeling & Estimation
Maximum Entropy Modeling

Graphical Models
Clustering

References

Introduction
Similarity
Hierarchical Clustering
Non-hierarchical Clustering
Evaluation

Clustering
Introduction
Similarity
Hierarchical Clustering
Non-hierarchical Clustering
Evaluation
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Dendogram

be not he I it this the his a and but in on with for at from of to as is was

Single-link clustering
of 22 frequent English
words represented as a
dendogram.
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Hierarchical Clustering

I Bottom-up (Agglomerative Clustering)
Start with individual objects, iteratively group the most
similar.

I Top-down (Divisive Clustering)
Start with all the objects, iteratively divide them maximizing
within-group similarity.

Llúıs Padró Statistical Methods for Natural Language Processing



Introduction
Statistical Models

Statistical Modeling & Estimation
Maximum Entropy Modeling

Graphical Models
Clustering

References

Introduction
Similarity
Hierarchical Clustering
Non-hierarchical Clustering
Evaluation

Agglomerative Clustering (Bottom-up)

Input: A set X = {x1, . . . , xn} of objects

A function sim:P(X )× P(X ) −→ R
Output: A cluster hierarchy

for i :=1 to n do ci :={xi} end
C :={c1, . . . , cn}; j :=n + 1
while C > 1 do

(cn1 , cn2):=arg max(cu ,cv )∈C×C sim(cu, cv )
cj = cn1 ∪ cn2

C :=C \ {cn1 , cn2} ∪ {cj}
j :=j + 1

end–while
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Cluster Similarity

Similarity measure families
I Single link: Similarity of two most similar members

I Local coherence (close objects are in the same cluster)
I Elongated clusters (chaining effect)

I Complete link: Similarity of two least similar members
I Global coherence, avoids elongated clusters
I Better (?) clusters

I Group average: Average similarity between members
I Trade-off between global coherence and efficiency
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Examples

A cloud of points in a plane Single-link clustering

Intermediate clustering Complete-link clustering
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Divisive Clustering (Top-down)

Input: A set X = {x1, . . . , xn} of objects

A function coh:P(X ) −→ R
A function split:P(X ) −→ P(X )× P(X )

Output: A cluster hierarchy

C :={X}; c1:=X ; j :=1
while ∃ci ∈ C s.t. |ci | > 1 do

cu:=arg mincv∈C coh(cv )
(cj+1, cj+2) = split(cu)
C :=C \ {cu} ∪ {cj+1, cj+2}
j :=j + 2

end–while
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Top-down clustering

I Cluster splitting: Finding two sub-clusters
I Split clusters with lower coherence:

I Single-link, Complete-link, Group-average
I Splitting is a sub-clustering task:

I Non-hierarchical clustering
I Bottom-up clustering

I Example: Distributional noun clustering (Pereira et al., 93)

I Clustering nouns with similar verb probability distributions
I KL divergence as distance between distributions

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

I Bottom-up clustering not applicable due to some q(x) = 0
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Non-hierarchical clustering

I Start with a partition based on random seeds

I Iteratively refine partition by means of reallocating objects
I Stop when cluster quality doesn’t improve further

I group-average similarity
I mutual information between adjacent clusters
I likelihood of data given cluster model

I Number of desired clusters ?
I Testing different values
I Minimum Description Length: the goodness function includes

information about the number of clusters
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K-means

I Clusters are represented by centers of mass (centroids) or a
prototypical member (medoid)

I Euclidean distance

I Sensitive to outliers

I Hard clustering

I O(n)
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K-means algorithm

Input: A set X = {x1, . . . , xn} ⊆ Rm

A distance measure d : Rm ×Rm −→ R
A function for computing the mean µ : P(R) −→ Rm

Output: A partition of X in clusters

Select k initial centers f1, . . . , fk
while stopping criterion is not true do

for all clusters cj do
cj :={xi | ∀ fl d(xi , fj) ≤ d(xi , fl)}

for all means fj do
fj :=µ(cj)

end–while
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K-means example

Assignment Recomputation of means
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EM algorithm

I Estimate the (hidden) parameters of a model given the data
I Estimation–Maximization deadlock

I Estimation: If we knew the parameters, we could compute the
expected values of the hidden structure of the model.

I Maximization: If we knew the expected values of the hidden
structure of the model, we could compute the MLE of the
parameters.

I NLP applications
I Forward-Backward algorithm (Baum-Welch reestimation).
I Inside-Outside algorithm.
I Unsupervised WSD
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EM example

I Can be seen as a soft version of K-means
I Random initial centroids
I Soft assignments
I Recompute (averaged) centroids

C1

C2

C1

C1

C2
C2

Initial state After iteration 1 After iteration 2

An example of using the EM algorithm for soft clustering
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Clustering evaluation

I Related to a reference clustering: Purity and Inverse Purity.

P = 1
|D|

∑
c

max
x
|c ∩ x |

IP = 1
|D|

∑
x

max
c
|c ∩ x |

Where:
c = obtained clusters
x = expected clusters

I Without reference clustering: Cluster quality measures:
Coherence, average distance, etc.
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I M. Padró Applying Causal-State Splitting Reconstruction
Algorithm to Natural Language Processing Tasks. Ph.D
Thesis. Universitat Politècnica de Catalunya, 2008.
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