
Centralizing a corporation was

once considered an efficient way

to run an enterprise.  Decisions

and information processing

occurred in an orderly, top-down,

hierarchical manner.  However, it

is now clear that this type of sys-

tem only works in a reasonably

stable market.  Globalization and

changes in technology are causing

today’s market to be in a state of

constant flux.  Companies that

cannot adapt fast enough to thrive

in these new markets will be left

behind.  

In response, many companies

are now building agent-based

systems.  These systems employ

agents that can distribute func-

tionality across a vast computing

network.  Furthermore, agents

can adapt to their environment

and evolve by learning from

the environment.  In short, they

are the ultimate in distributed

computing.  Such an approach

prepares enterprises for an

increasingly complex marketplace

and enables them to respond

rapidly to change.  

However, agents and agent-based

technology are an evolution, not a

revolution.  They are being built

from, and will work in combina-

tion with, today’s technology.

While agents, objects, relational

databases, legacy systems,

embedded systems, and so on

each have their own niche,

together they can orchestrate rich

systems that none of these tech-

nologies could provide alone.  

WHAT IS AN AGENT?

A Flock Is Not a Bird

Imagine you are sitting in the park

on a nice summer day and a flock

of birds sweeps the sky.  One

moment the birds are circling,

another they dart to the left or

drop to the ground.  Each move

is so beautiful that it appears

choreographed.  Furthermore,

the movements of the flock seem

smoother than those of any one

bird in the flock.  Yet the flock has

no high-level controller or even a

lead bird.  The phenomenon is a

result of what is often called self-

organization.1 Each bird follows a

simple set of rules that it uses to

react to birds nearby.  When

animator Craig Reynolds of

DreamWorks developed his bird

simulation (www.red.com/cwr/

boids.html), each bird behaved

according to two basic rules:

� Maintain a minimum distance

from other objects, including

other birds.

� Be sociable (i.e., try to match

velocities with other birds if

DISTRIBUTED COMPUTING
ARCHITECTURE/E-BUSINESS
ADVISORY SERVICE
Agents: Technology and Usage (Part 1)

Executive Report, Vol. 3, No. 4

by James Odell



they are nearby, and move

toward the perceived center

of their group).  

Orderly flocks emerge from

simple rules like these.  No one

bird has a sense of an overall

flock.  The “bird in front” is merely

the position of a given bird.  It just

happens to be there — and will

be replaced by others in a matter

of minutes.  “The flock is orga-

nized without an organizer, coor-

dinated without a coordinator,” as

Mitchell Resnick states.1

Flocks of birds are not the

only things that work this way.

Beehives, ant colonies, freeway

traffic, national and global

economies, societies, and

immune systems are all examples

of patterns that are determined by

local component interaction

rather than centralized authority.

For IT applications, this can

include order processing, supply

chain, shop floor control, inven-

tory management, message rout-

ing, and management of multiple

databases.  In other words, a

decentralized approach should be

considered wherever local com-

ponents have control — instead of

limiting your approach to the cen-

trally organized one traditionally

employed by IT.  After all, if New

York City can maintain a two-

week supply of food with only

locally made decisions, why can’t

a supply-chain system perform in

a similar manner?  As Figure 1

suggests, if we could develop IT

systems using even the simplicity

of an ant colony, we would have

very robust and adaptable sys-

tems indeed.

Definition of Agent

Another name for the “local

component” described above is

agent.  An agent can be a person,

a machine, a piece of software, or

a variety of other things.

The basic dictionary definition of

agent is one who acts.  However,

for developing IT systems, such a

definition is too general; IT-related

agents need additional properties.

Some of the properties that agents

may possess in various combina-

tions include being:

� Autonomous — capable 

of acting without direct exter-

nal intervention.  It has some

degree of control over its inter-

nal state and actions based on

its own experiences.  

� Interactive — communicates

with the environment and other

agents.

� Adaptive — capable of

responding to other agents

and/or its environment to some

degree.  More advanced forms

of adaptation permit an agent

to modify its behavior based on

its experience.

� Sociable — interaction that

is marked by friendliness or

VOL. 3, NO. 4 www.cutter.com/consortium/

22 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

Distributed Computing Architecture/e-Business Advisory Service Executive Report is published by the Cutter Consortium, 37 Broadway, Suite 1,
Arlington, MA 02474-5552.  Tel: +1 781 641 5118 or, within North America, +1 800 964 5118, Fax: +1 781 648 1950 or, within North America, +1 800
888 1816, E-mail: consortium@cutter.com, Web site: www.cutter.com/consortium/.  Client Services: Megan Nields, Tel: +1 781 641 5118, or Christine
Doucette, Tel: +1 781 641 9768, E-mail: info@cutter.com.   ©2000 by Cutter Consortium.  All rights reserved.  Unauthorized reproduction in any form,
including photocopying, faxing, and image scanning, is against the law.

Figure 1 — What if we could build IT systems that are as robust and adaptable 
as those found in nature?  (Source: Van Parunak, ERIM, Inc.2)



pleasant social relations; that is,

the agent is affable, compan-

ionable, or friendly.

� Mobile — able to transport

itself from one environment

to another.

� Proxy — may act on behalf of

someone or something, that is,

acting in the interest of, as a

representative of, or for the

benefit of, some entity.

� Proactive — goal-oriented,

purposeful.  It does not simply

react to the environment.

� Intelligent — state is formal-

ized by knowledge (i.e., beliefs,

goals, plans, assumptions) and

interacts with other agents

using symbolic language.

� Rational — able to choose an

action based on internal goals

and the knowledge that a par-

ticular action will bring it closer

to its goals.  

� Unpredictable — able to act

in ways that are not fully pre-

dictable, even if all the initial

conditions are known.  It is

capable of nondeterministic

behavior.

� Temporally continuous — is a

continuously running process.

� Credible — believable person-

ality and emotional state.

� Transparent and accountable

— must be transparent when

required, but must provide a

log of its activities upon

demand.

� Coordinative — able to per-

form some activity in a shared

environment with other agents.

Activities are often coordinated

via plans, workflows, or some

other process management

mechanism.

� Cooperative — able to coordi-

nate with other agents to

achieve a common purpose;

nonantagonistic agents that

succeed or fail together.

(Collaboration is a term

used synonymously with

cooperation.)

� Competitive — able to coordi-

nate with other agents except

that the success of one agent

implies the failure of others

(the opposite of cooperative).

� Rugged — able to deal with

errors and incomplete data

robustly.

� Trustworthy — adheres

to Laws of Robotics and is

truthful.

An industry-standard definition of

agent has not yet emerged.  Most

agree that agents bound for IT sys-

tems are not useful without at

least the first three of the above

properties.  Others require IT

agents to possess all of the prop-

erties listed above to varying

degrees.  At a minimum, an IT

agent is generally regarded to be

an autonomous entity that can

interact with its environment.  In

other words, it must be able to

perceive its environment through

sensors and act upon its environ-

ment with effectors. 

Agents and OO

An agent-based approach is

employed when a particular situa-

tion requires that processing be

decentralized and self-organized,

instead of centrally organized.

Although a centrally organized

program could have been written

to handle the bird simulation, the

system would have been far too

cumbersome.  It would have

required a single set of top-level

rules telling each bird precisely

what to do in every conceivable

situation.  Not only would such an

application be touchy and fragile,

it would likely end up looking

jerky and unnatural, more like a

poorly animated cartoon than

animated life.3

Most developers tend to build cen-

trally organized applications.  They

are also biased toward object-

oriented (OO) notions such as

class, association, and message.

Although these constructs are

useful for a certain category of

applications, they do not directly

address the requirements of

agents.  As we saw above, agents

have characteristics such as

autonomy, mobility, and adaptabil-

ity.  Furthermore, business users

like to express other concepts,

such as rules, constraints, goals

and objectives, and roles and

responsibilities.  In short, the

agent-oriented approach distin-

guishes between autonomous,

©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 33



interactive, mobile entities

(agents) and the passive ones of

conventional OO (objects).  This

does not mean that object orien-

tation is dead or passé.  A well-

designed agent-based system

uses both objects and agents —

just as real-life organizations

employ a balance of both active

and passive elements.  Further-

more, object technology can be

used to enable, rather than drive,

agent-oriented technology.  (In

the coming months, Part 2 of this

report will discuss the differences

and similarities of agents and

objects.)

Important Forms of IT Agents

The agents found in IT systems

have special requirements: they

must execute as software, hard-

ware, robotics, or a combination

of these.  Agent developers have

identified several forms of agents

that are important for IT system

development.  The list of agent

characteristics presented earlier

addresses some of these require-

ments.  Additionally, since IT

systems have special needs,

software- and hardware-related

forms must be considered.  Those

forms considered the most impor-

tant to agent developers today are

discussed below.

Software Agents

Software agents are a more

specific kind of agent.  At a

minimum, software agents are

defined as autonomous software

entities that can interact with their

environment.  In other words,

they are agents that are imple-

mented using software.  This

means that they are autonomous

and can react with other entities,

including humans, machines, and

other software agents, in various

environments and across various

platforms. 

Basically, software agents are

design patterns for software.

Tools, languages, and environ-

ments can be specifically devel-

oped to support the agent-based

pattern.  However, the agent

design pattern can also be imple-

mented using OO tools, lan-

guages, and environments — or

any other tool, language, or envi-

ronment that is capable of sup-

porting software entities that are

autonomous, interactive, and

adaptive.  Agent-based tools are

preferable primarily because the

agent design patterns are inherent

in the software, rather than explic-

itly programmed.  In other words,

object technology can be used to

enable agent-based technology,

but the autonomous, interactive,

and adaptive nature required by

agents is not currently supported

within OO technology.  These

properties can be (and are being)

added to the OO approach, but,

currently, the design patterns

for agents and agent-based soft-

ware are not fully and directly

supported.

(Author’s Note: From this point

on, the term agent will usually

mean software agent.  Although

many of the ideas and technology

discussed here can be general-

ized to support machines and

people, the emphasis in this

Executive Report will be on soft-

ware implementation.)

Autonomous Agents

When an agent has a certain inde-

pendence from external control,

it is considered autonomous.

Autonomy is best characterized in

degrees, rather than simply being

present or not.  To some extent,

agents can operate without direct

external invocation or interven-

tion.  Without any autonomy, an

agent would no longer be a

dynamic entity, but rather a pas-

sive object such as a part in a bin

or a record in a relational table.

Therefore, autonomy is consid-

ered by the Foundation for

Intelligent Physical Agents (FIPA)

and the Object Management

Group’s (OMG) Agent Working

Group to be a required property

of agents.

VOL. 3, NO. 4 www.cutter.com/consortium/

44 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

At a minimum, software agents

are defined as autonomous software

entities that can interact with their

environment.  In other words, they

are agents that are implemented

using software.  This means that they

are autonomous and can react with

other entities, including humans,

machines, and other software

agents, in various environments and

across various platforms.



Autonomy has two independent

aspects: dynamic autonomy

and unpredictable autonomy.

Agents are dynamic because

they can exercise some degree

of activity — ranging from simply

passive to entirely proactive.  For

example, although ants are basi-

cally reactive, they do exhibit a

small degree of proaction when

they choose to walk, rest, or eat.

A supply-chain agent can react

to an order being placed, yet be

proactive about keeping its list

of suppliers up to date.  

Agents can react not only to spe-

cific method invocations but also

to observable events within the

environment.  Proactive agents

will actually poll the environment

for events and other messages

to determine what action they

should take.  (To compound this,

many agents can be engaged in

multiple parallel interactions

with other agents, magnifying

the dynamic nature of the agent

system.)  In short, an agent

can decide when to say “go.”

Agents may also employ some

degree of unpredictable (or non-

deterministic) behavior.  When

observed from the environment,

an agent can range from being

totally predictable to completely

unpredictable.  For example, an

ant that is wandering around

looking for food can appear to

be taking a random walk.  How-

ever, once pheromones or food

are detected, the ant’s behavior

becomes quite predictable.

In contrast, the behavior of a

shopping agent might be highly

unpredictable.  Sent out to

choose, negotiate, and buy a

birthday present for your mother-

in-law, the agent might return

with something odd indeed or

with nothing at all.  In fact, the

agent can even say “no.”

Interactive Agents

Interactive agents can communi-

cate with both the environment

and other entities and can be

expressed in degrees.  On one

end of the scale, object messages

(method invocation) can be seen

as the most basic form of inter-

action.  A more complex degree

of interaction would include

those agents that can react to

observable events within the

environment.  For example, food-

gathering ants do not invoke

methods on each other; their

interaction is indirect through

physically affecting the environ-

ment.  In other words, ants do not

receive method invocations; they

receive events regarding the state

of the environment.  Even more

complex interactions are found in

systems where agents can be

engaged in multiple, parallel inter-

actions with other agents.  Here,

agents begin to act as a society.

Finally, the ability to interact

becomes most complex when

systems involving many heteroge-

neous agents can coordinate

through cooperative and/or com-

petitive mechanisms (such as

negotiation and planning).

Although we can conceive of an

agent that cannot interact with

anything outside of itself, the use-

fulness of such an entity for devel-

oping agent-based systems is

questionable.  Therefore, like

autonomy, interaction is consid-

ered by FIPA and OMG’s Agent

Working Group to be a required

property of agents.

Adaptive Agents

An agent is considered adaptive

if it is capable of responding to

other agents and/or its environ-

ment to some degree.  At a min-

imum, this means that an agent

must be able to react to a simple

stimulus — to make a direct, pre-

determined response to a particu-

lar event or environmental signal.

Thermostats, robotic sensors, and

simple search bots fall into this

category.  

Beyond the simple reactive agent

is the agent that can reason.

Reasoning agents react by making

inferences and include patient

diagnosis agents and certain kinds

of data mining agents.  

©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 55

The behavior of a shopping agent

might be highly unpredictable.

Sent out to choose, negotiate,

and buy a birthday present for

your mother-in-law, the agent

might return with something odd

indeed or with nothing at all.  

In fact, the agent can even say “no.”



More advanced forms of adapta-

tion include the capacity to learn

and evolve.  These agents can

change their behavior based on

experience.  Common software

techniques for learning are neural

networks, Bayesian rules, credit

assignments, and classifier rules.

Examples of learning agents are

agents that can approve credit

applications, analyze speech, and

recognize and track targets.  A

primary technique for agent evo-

lution usually involves genetic

algorithms and genetic program-

ming.  Here, agents can literally

be “bred” to fit specific purposes.

For example, operation plans,

circuitry, and software programs

can be bred, proving to be more

optimal than any human could

make in a reasonable amount

of time.

An agent that cannot respond to

its environment or to other agents

is another kind of agent whose

usefulness is questionable for

developing agent-based systems.

Therefore, adaptation is consid-

ered by FIPA and OMG’s Agents

Working Group to be a required

property of agents.

Mobile Agents

Stationary agents exist as a single

process on one host computer;

mobile agents can pick up and

move their code to a new host

where they can resume executing.

From a conceptual standpoint,

such mobile agents can also be

regarded as itinerant, dynamic,

wandering, roaming, or migrant.

The rationale for mobility is the

improved performance that can

sometimes be achieved by moving

the agent closer to the services

available on the new host.  

For example, if an agent wants to

obtain information from several

sources on different platforms, it

could send information requests

to each of the platforms using the

equivalent of a remote procedure

call (RPC).  However, if the vol-

ume of information exchanged

with the remote site is large,

issues of traffic and bandwidth

must be considered.  Also, the

agent might be able to process

the remote data more effectively

than those services offered at the

remote site.  In either or both of

these cases, relocating the agent

to each of the various platforms

could be a more efficient way of

processing.  One disadvantage of

such mobility is that the remote

sites must provide the CPU cycles

to support the mobile agent’s pro-

cessing.  This brings an additional

processing burden to the remote

site.  It also raises three issues:

security, billing the agent for its

CPU time, and unanticipated

scalability problems. 

The ability of an agent to transport

itself from one environment to

another is not a requirement for

agenthood.  Nevertheless, mobil-

ity is an important property for

many agent-based systems — and

necessary for a certain class of

application. 

Coordinative Agents

Human organizations exist pri-

marily to coordinate the actions of

many individuals for some pur-

pose.  That purpose could be to

create such structures as prof-

itable business units, charitable

organizations, ballet companies,

or Little Leagues.  Using human

organizations as an analogy, sys-

tems involving many agents could

benefit from the same pattern.

Some of the common coordina-

tive agent applications involve

supply chains, scheduling, vehicle

planning, problem solving, con-

tract negotiation, and product

design.  Without some degree of

coordination, such systems could

not be possible — in either

human or agent-based systems.  

Furthermore, the analogy requires

that we consider a heterogeneous

population of agents.  Human

organizations are not constructed

with a population of identical indi-

viduals doing the same thing;

instead, we diversify, delegate,

negotiate, manage, cooperate,

compete, and so on.  The same

approach needs to be employed

VOL. 3, NO. 4 www.cutter.com/consortium/

66 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

Human organizations are not

constructed with a population of

identical individuals doing the same

thing; instead, we diversify, delegate,

negotiate, manage, cooperate,

compete, and so on.  The same

approach needs to be employed

in multiple agent systems.



in multiple agent systems.  Careful

consideration should be given to

designing and structuring agent-

based systems, however.  This will

increase the likelihood that agents

will be coherent in their behavior.

While this limits and controls

agent spontaneity, it still preserves

agent-level flexibility.

Intelligent Agents

After decades, the term intelligent

has still not been defined (or

understood) for artificial systems,

and applying the term now to

agents may not be appropriate.

Most people tend to regard the

terms agent and intelligent agent

as equivalent.  Perhaps this is just

an attempt to communicate that

agents have more power than

conventional approaches.  For

example, in comparison to rela-

tional tables or objects, agents

can be thought of as somewhat

“smarter ” — or it could just be

marketing hype.  However, it

would be fair to say that the

notion of intelligence for agents

could very well be different than

for humans.  We are not creating

agents to replace humans;

instead, we are creating them to

assist or supplement humans.  A

different kind of intelligence, then,

would be entirely appropriate.  

The current wisdom is that what-

ever the term intelligent agent

means, such agents will require a

basic set of attributes and facili-

ties.  For example, an intelligent

agent’s state must be formalized

by knowledge (i.e., beliefs, goals,

desires, intentions, plans, assump-

tions) and must be able to act on

this knowledge.  It should be able

to examine its beliefs and desires,

form its intentions, plan what

actions it will perform based on

certain assumptions, and eventu-

ally act on its plans.  Furthermore,

intelligent agents must be able to

interact with other agents using

symbolic language.  All this

sounds like a model of rational

human thinking — but we should

not be surprised.  Once again,

agent researchers are using our

understanding of how humans

think as a model for designing

agents.  

FIPA and OMG’s Agent Working

Group do not have a standard

definition of an intelligent agent.

However, the description above

provides a general idea of the

group’s current direction.

Wrapper Agents

This agent allows another agent to

connect to a nonagent software

system/service uniquely identified

by a software description.  Client

agents can relay commands to

the wrapper agent and have them

invoked on the underlying ser-

vices.  The role provided by the

wrapper agent provides a single

generic way for agents to interact

with nonagent software systems.

(Note: the wrapper agent would

probably not be necessary for

objects; that is, objects should still

be able to coexist in the same

environment.)

The wrapper is considered impor-

tant by FIPA and OMG’s Agent

Working Group.  It provides a

bridge to legacy code and facili-

tates the reuse of code for an

agent’s process.

Other Forms of Agents

The kinds of agents listed above

are the predominate forms con-

sidered for every agent-based sys-

tem.  More detailed examination

of an application can identify

other forms, such as facilitator

agents, broker agents, manager

agents, and so on.  These forms

can be more easily thought of as

roles that an agent can play, rather

than the fundamental approach

designed into an agent. 

Single Versus Multiagent Systems

Many of the early commercial

agents were developed for infor-

mation searching.  Here, individ-

ual agents were launched on a

tether to gather predefined kinds

of information and return them to

the human requester.  In other

words, these agents were solo

operations that had very little, if

any, interaction with other agents.

Such an approach certainly has its

many uses.  However, if we look

at the human world, such an

approach alone could not build

the societies or support the orga-

nizations that humans have come

to enjoy.  Instead, we set up net-

works of people that interact for

various purposes.  Interaction

among agents, then, is not suffi-

cient to build agent societies, we

©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 77



VOL. 3, NO. 4 www.cutter.com/consortium/

88 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

need agents that can coordinate

either through cooperation, com-

petition, or a combination of both.

These agent “societies” are called

multiagent systems (MAS).

Multiagent systems are systems

comprising agents coordinated

through their relationships with

one another.  For example in a

kitchen, the toaster “knows”

when the toast is done, and the

coffeemaker “knows” when the

coffee is ready.  However, there is

no cooperative environment here

— only an environment with sin-

gle agents.  In a multiagent envi-

ronment, the kitchen becomes

more than just a collection of

processors.  The appliances

would be interconnected in such

a way that the coffeemaker and

the toaster would ensure that the

coffee and toast are ready at the

same time.

Some of the rationale for multi-

agent systems is as follows:

� One agent could be con-

structed that does everything,

but fat agents represent a

bottleneck for speed, reliability,

maintainability, and so on

(i.e., there are no omnipotent

agents).  Dividing functionality

among many agents provides

modularity, flexibility, modifia-

bility, and extensibility.

� Specialized knowledge is not

often available from a single

agent (i.e., there are no omni-

scient agents).  Knowledge that

is spread over various sources

(agents) can be integrated for

a more complete view when

needed.  

� Applications requiring distrib-

uted computing are better

supported by MAS.  Here,

agents can be designed as fine-

grained autonomous compo-

nents that act in parallel.

Concurrent processing and

problem solving can provide

solutions to many problems

that, up until now, we handled

in a more linear manner.

Agent technology, then, pro-

vides the ultimate in distributed

component technology.

To support MAS, an appropriate

environment needs to be estab-

lished.  MAS environments:

1. Provide an infrastructure

specifying communication

and interaction protocols

2. Are typically open and have

no centralized designer or 

top-down control function

3. Contain agents that are

autonomous, adaptive, and

coordinative  

Clearly, single-agent environments

are much simpler because

designers do not have to deal with

such issues as cooperation and

negotiation.  However, the large-

scale requirements of industry

necessitate approaches that

employ coordination and distribu-

tion.  As such, FIPA and OMG’s

Agent Working Group are focusing

primarily on multiagent systems

rather than single agents. 

AGENT-BASED
MANUFACTURING: 
A CASE STUDY

The Traditional Manufacturing
Approach

In traditional manufacturing,

information systems mimic

organizational structures, using a

top-down, command-and-control

structure.  Communicating deci-

sions and information down

through the organization is time

consuming — making it impos-

sible to respond and adapt quickly

to external forces.

Furthermore, traditional manufac-

turing relies on schedules as a

means of forecasting what needs

to be produced.  Schedulers

sequence jobs based on the

assumption that the environment

will not significantly change dur-

ing the schedule’s time span.

This approach works adequately

in a predictable market.  In a tur-

bulent marketplace, a schedule

is impractical.  Any small, unantic-

ipated change in demand or

factory floor conditions can sub-

stantially affect the schedule,

rendering it obsolete.

Another problem with traditional

schedulers is that they try to

anticipate and plan for every

possible change that may occur.

Unfortunately, the range of sce-

narios and the possible combina-

tions of parameters are infinite

because manufacturing is so

complex.  Even if it were possible

to precode all possible scenarios,

the cost of considering and



©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 99

programming all possible combi-

nations is prohibitive.  An unantic-

ipated scenario could cause the

system to fail.

In short, traditional manufacturing

facilities have the following short-

comings that affect their ability

to compete in today’s constantly

changing marketplace:

� They do not have mechanisms

in place to accommodate rapid

changes in business conditions

caused by global competition

and changing market

demands.

� They do not have mechanisms

in place to modify systems

while they are executing.

� They are rigid and slow to

make significant organizational

or functional changes.

� They do not have a mechanism

to recover gracefully from par-

tial failures on the factory floor.

� They are unable to form 

or to participate in virtual

enterprises.

� They are not scalable for

changes in the market.

� The business model and the

operational philosophy are not

customer driven.

These shortcomings cause prob-

lems such as reduced productiv-

ity, increased costs, and missed

market opportunities.  To remain

competitive in today’s market-

place, manufacturing must

change its approach.  In response,

a major automotive company is

building an agent-based manufac-

turing system under the direction

of Dr. David Greenstein.4 Here,

the agents not only adapt to their

environment but can also evolve

by learning from the environment.

Such an approach prepares man-

ufacturing enterprises for the

increasingly complex marketplace

and enables them to respond

rapidly to change.  

This section provides a case study

describing how agent-based tech-

nology can be applied in business

applications.  Although the exam-

ple is for an automotive company,

the concepts are applicable to

many other industries.

An Agent-Based Solution

The Agile Manufacturing

Information System (AMIS) is a

new approach and operational

model that addresses the prob-

lems of traditional manufacturing

practices.  Because today’s

dynamic marketplace is similar to

ecosystems, AMIS is modeled

after the behavior of the natural

world — an approach that is agile,

adaptive, and dynamic.  It can

adjust to changes in the market-

place and in technology, making it

effective and competitive.

Traditional manufacturing systems

rely on a rather rigid, top-down

structure to represent a manu-

facturing enterprise.  AMIS uses

a loose aggregation of software

agents to represent a manufac-

turing entity.  For example,

resource agents represent the

capabilities and capacity of the

various resources available, such

as machines, tools, people, and

computers.  The work performed

within a facility is represented by

job agents.  In a small system, the

interaction of the resource agents

with job agents manages the

manufacturing process.  

However, in systems involving

many jobs and resources, the

interaction could tax even mod-

ern information systems.  Here,

resource agents can be grouped

into cells.  Since cells are agents

in their own right, they can form

virtual organizations able to adapt

constantly to the changing global

marketplace.  This dynamic struc-

ture enables each cell to remain

agile.  Rather than being con-

strained by a fixed hierarchy, the

cells (and therefore the overall

business) can thrive in a continu-

ously changing and unpredictable

environment.

Since cells are agents in their own

right, they can form virtual

organizations able to adapt

constantly to the changing global

marketplace.  This dynamic structure

enables each cell to remain agile.

Rather than being constrained by a

fixed hierarchy, the cells (and

therefore the overall business) can

thrive in a continuously changing

and unpredictable environment.



VOL. 3, NO. 4 www.cutter.com/consortium/

1100 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

Each cell can be treated as a

manufacturing business unit.

Since it is responsible for its own

bottom line, each cell must be

profitable over time.  When a cell

is consistently unprofitable, it is

dissolved and other cells absorb

its resources.  Similarly, each

resource in a cell is responsible

for maintaining a positive bottom

line and contributing to the cell’s

overall profit.  This distributed

profit responsibility allows the

cell to maintain a suitable size

and the right mix of resources

for the current workload, while

maintaining the flexibility to

address future needs.

As Greenstein states, “For a manu-

facturer to succeed in today’s

competitive world, it must have

the optimal mix of people, equip-

ment, and knowledge to make

the product.  The AMIS architec-

ture provides flexibility and agility

in a software system, which

enables a manufacturer to moni-

tor, evaluate, and adjust the mix

of resources, people, and tools

required as market demands

change.”4

The AMIS Agents in More Detail

Cell Agents

In living systems, a cell is a self-

contained unit that has its own

structure and behavior.  It consists

of other self-contained structures

that interact to support the cell.

How well the cell and its compo-

nents work together determines

whether the cell lives or dies.  In

a manufacturing system, each

cell agent is a business unit repre-

senting a collection of physical

resources, including machines,

tools, and people.  The cell

operates as a self-contained

business unit and only continues

to exist if it meets its profit and

production goals and its responsi-

bilities.  The cell also controls its

own size, changing the mix and

number of resources over time

to maintain its profitability and

competitiveness in the market-

place.  The architecture of a cell

is summarized in Figure 2. 

���������	
���

���������	
���

���������	
���

��������

���������	
���

���������	
���

���������	
���


�
�������

��������

��������

��������

��������

��������

����������

�����������
��

�������������
��

	�����������
��

	���������
��

�������

�����������
����
��

	��	������

������������
��

�������

�����������
����
��

�����
�������
����
��

���������
��

���� ����������
��

�������������
��

���
�����������
��

!��������!����

�"##

Figure 2 — Typical cell agent architecture for a manufacturing system.



©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 1111

Common Function Agents

Common function agents interact

with each other and with the

resource agents.  They provide the

complete set of business function-

ality required to operate the cell

as an independent business unit.

Each common function agent is

responsible for a different busi-

ness or manufacturing function

within the cell.  Some of these

agents contain information about

the resources within the cell,

such as the capabilities of the

resources.  Other agents provide

interfaces to the people working

in the cell, such as process plan-

ners and machine operators.

For example, the maintenance

manager schedules and directs

maintenance activities whether

they are scheduled, opportunistic,

or reactive.  It also keeps track of

the maintenance history.

The process planner determines

whether the cell will bid on

requests for quote (RFQs)

received by the cell.  A broad

analysis is made of the cell to

judge the cell’s ability and desire

to produce a quote for this RFQ.

The analysis uses criteria associ-

ated with the type of product

being requested (automotive,

pharmaceuticals, electronics,

etc.), the processes needed

(welding, casting, packing, etc.),

and the resources needed (five-

axis CNC, drill, sheet metal press,

etc.).  If it is determined that the

cell lacks the appropriate abilities

and cannot subcontract them,

then the cell will not bid on the

RFQ.  If the cell does bid on the

RFQ, the process planner gener-

ates the process workflow (e.g., a

Unified Modeling Language [UML]

Activity Diagram) that will be used

to execute the quote, if selected.

The capability manager uses the

process workflow to verify that the

cell has the resources needed to

carry out the job.  It verifies each

step in the process (job agent)

with the available resources in the

cell.  The verification of the capa-

bility is based on the information

contained in the workflow (time,

quality, special characteristics, and

cost criteria).  If the capability is

not present in the cell, the capabil-

ity manager initiates the subcon-

tracting process through the

process planner.

Similarly, the capacity manager

uses the information from the

workflow to provide capacity to

the job agents.  The jobs currently

accepted by the cell are taken

into consideration when deciding

if the cell has the capacity to take

on this new job.  If sufficient

capacity is not present in the cell,

the capacity manager initiates the

subcontracting process through

the process planner.

Negotiator Agents

Negotiator agents (at the top of

the cell architecture diagram in

Figure 2) communicate with the

outside world on behalf of the

cell.  The negotiator provides an

interface between the cell and the

outside world.  It routes messages

received from the outside world

to the appropriate common func-

tion agent.  When preparing

quotes for new jobs, the nego-

tiator assembles the quote infor-

mation provided by the other

agents and summarizes the final

quote information for the cus-

tomer.  Similarly, when the cell

receives quotes from subcon-

tractors, the negotiator works

with other agents to select the

winning quote.

Resource Agent

Each resource agent represents

a physical resource within the

cell: a machine, tool, computer,

or person.  Each physical resource

provides a specialized utility

or function to add value to the

order-completion process.  The

resource agent captures the attrib-

utes of the physical resource,

allowing the agent to represent it

in the cell and to coordinate the

cell’s use of the resource.

Each resource agent lists the

capabilities that define those

processes that the physical

resource can perform.  For

example, a resource might be

able to perform several types of

milling operations.  The capability

list allows the resource agent to

determine whether to bid on the

various jobs in the cell.

Resources keep track of their

assigned jobs by maintaining a

prioritized list of jobs that the

resource wins.  Each job defines



VOL. 3, NO. 4 www.cutter.com/consortium/

1122 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

its job type, the earliest start time

for the job, the expected job dura-

tion, the latest finish time, and the

estimated cost.

The resource agent also maintains

profit and loss figures for the

resource.  The best interest of a

resource is to maximize profit by

working on as many jobs as pos-

sible.  If the resource does not

maintain a profit over time, the cell

may sell the resource to another

cell.  The resource agent is respon-

sible both for ensuring that the

resource is optimally utilized and

for representing the resource

when bidding for new jobs.

Job Agent

The job agent represents the cus-

tomer through the order placed

into the system.  The job agent

defines the processes needed to

complete the final product speci-

fied in a customer order.  Each

node in the process workflow is

a subjob and is handled by an

agent.  Each subjob agent con-

tains information about that spe-

cific process, including the type

of process, set-up time, runtime,

and cost.  

The job agent is responsible for

monitoring its current status

and due dates.  As due dates

approach for the overall job or for

individual subjobs, the subjob

agent will raise alarms to initiate

corrective action.  The subjob also

communicates with its neighbor-

ing subjobs, passing state infor-

mation and alarms to allow the

previous and following subjobs to

monitor more accurately their sta-

tus and take appropriate action.

The job and subjob agents are

active agents responsible for

making sure that they are com-

pleted by the expected due dates

and at the lowest cost possible.

Broker Agent

The broker agent helps customers

find providers of services and

products.  In the AMIS environ-

ment, each provider is a cell that

registers with the broker, specify-

ing the types of products and ser-

vices it provides.  For example,

car buyers do not have to contact

each automobile manufacturer;

instead, they send the attributes

of the desired model (including

such criteria as price, delivery

date, color, and accessories) to

the broker.  The broker forwards

the request to each automobile-

producing cell that has registered

with the broker.  

The customer specifies the date

by which all cells must provide

quotes.  The broker waits until

this date and then collects all the

cell bids and returns them to the

customer.  When the customer

selects a winning quote, the bro-

ker forwards the customer award

notification to the winning cell.

Losing cells can view the attrib-

utes of the winning bid and com-

pare it to their bid, in order to

improve their bids in the future.  

AMIS organizes brokers in a hier-

archy based on geographic

regions.  First, the local broker

forwards the customer request

to its local cells that have regis-

tered.  If no local cell can meet

the customer request, the broker

forwards the request to the

regional broker.  The regional bro-

ker forwards the request to each

local broker within that region.  In

turn, these local brokers forward

the request to every cell within

their local area that manufactures

the requested product.

The bids from each cell pass back

through this hierarchy, going from

the local information brokers to

the regional broker.  The regional

broker returns the bids to the cus-

tomer via the local information

broker that originally received the

customer request.

If no cells within the region can

meet the customer requirements,

the regional broker forwards the

request to the global broker.  The

process is repeated, with the

global broker forwarding the

request to each regional broker,

down through the local informa-

tion brokers, and to each cell

worldwide that produces that

product.

In some cases, the customer may

wish to solicit quotes from cells

worldwide without initially limit-

ing the scope to cells registered

with the local broker.  In this case,

the customer sends the require-

ments directly to the global bro-

ker, bypassing the local and

regional brokers.



©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 1133

Adaptation in Natural Systems

Adaptation is no stranger to

manufacturing operations.  Manu-

facturers that fail to adapt rapidly

to changes become extinct; they

go out of business.  Adaptation

enables the system to react to

changes in the market or in the

manufacturing environment.

When designed properly, the indi-

vidual parts of the system can be

empowered to change based on

their environment and market

conditions.  

An adaptive agent is one that

responds to its environment.

The simplest form of adaptation

is reaction, that is, a direct, pre-

determined response to a particu-

lar event or environmental signal

usually expressed in an if-then

form.  From atoms to ants, the

reactive mode is quite evident.

A carbon atom would have a

rule that states in effect, “If I am

alone, I will only bond with oxy-

gen atoms.”  An ant would have

a rule that if it finds food, it should

return the food to its colony,

leaving a trail of pheromones.

Reaction rules do not change in

and of themselves, but change can

come through other mechanisms

such as learning and evolution.

Without learning and evolution,

ants and atoms are still quite able

to support complex “societies.”

With learning and evolution, how-

ever, the rules can be changed

based on experience — resulting

in new and perhaps improved

results.

Learning

Learning is change that occurs

during the lifetime of an agent

and can take many forms.

The most common techniques

enable rules and decisions to be

weighted based on positive (or

negative) reinforcement.  For

example, in a basic bidding

system, a bid could be selected

simply on the basis of bid price.

However, other considerations

might also be appropriate, such

as the bidder’s ability to deliver

its goods in the quantity, quality,

and time frame requested.  Over

time, a purchasing agent can

learn to choose from reliable

vendor agents instead of just

choosing the lowest bid.  If a

vendor’s performance improves

(or declines), the purchaser’s

decisions are modified accord-

ingly.  In other words, the agent

continues to learn.  Popular learn-

ing techniques that employ rein-

forcement learning include credit

assignment, Bayesian and classi-

fier rules, and neural networks.

Evolution

Evolution is change that occurs

over successive generations of

agents.  For example, cell agents

in AMIS continually evolve to

address changing market and

business needs.  Here, the mix of

resources within a cell dynami-

cally evolves and changes so the

cell can produce the products

demanded in the marketplace.

Each resource agent in a cell

must continue to win jobs and

maintain a positive bottom line,

thereby contributing to the overall

profitability of the cell.

A resource that consistently fails

to win jobs will eventually have a

negative cash balance.  If a

resource maintains a negative

cash balance long enough, the

cell may decide to replace that

resource.  The nonproductive

resource can either “die” due to

malnutrition of cash or be sold to

another cell.  The original cell can

then buy a replacement resource

possessing capabilities that are

better suited to the products

made by the cell.  In other words,

there is a “survival of the fittest”

quality to the mechanism, in

which each internal change repre-

sents a new generation of cell.  By

evolving in this way, the cell main-

tains a set of resources that allows

it to remain profitable and survive

in a dynamic marketplace.  

Best Interest

Whether adaptation is by learning

or evolution, each agent is

Reaction rules do not change in

and of themselves, but change can

come through other mechanisms

such as learning and evolution.  

With learning and evolution, the 

rules can be changed based on

experience — resulting in new and

perhaps improved results.



VOL. 3, NO. 4 www.cutter.com/consortium/

1144 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

responsible for acting in its own

best interests to ensure that its

goals are met.  The cell agent’s

best interest is to win as many

jobs as possible and keep the cell

busy fulfilling customer orders.

The cell also generates as much

profit as possible, ensuring its

continued viability as a virtual

business enterprise.

The resource agent’s best interest

is to win as many jobs as possible

and keep busy processing jobs.

The resource also generates

as much profit as possible,

guaranteeing that it remains a

viable member of the cell.  

The job agent’s best interest is to

complete the job quickly, making

certain that it is finished by the

customer’s due date.  The job

agent also looks for the cell and

resource that can complete the

job at the lowest possible cost.

The best interest concept embod-

ies the metaphor of free market

behavior, as the cell, resource,

and job interact and compromise

to reach a solution that balances

each agent’s best interests.

This balancing of best interests

between these three entities and

their dynamic interaction allows a

dynamic, adaptive, and produc-

tive structure to emerge in agent-

based manufacturing systems.

Seven-Step Negotiation Process

When you decide to purchase a

product, your decision is influ-

enced by certain requirements.

For instance, the cost of the

product must be within your

budget.  Another requirement

might be how long it takes to

receive the finished product.

Once all the elements of your

decision criteria are met, you

award the work to the supplier

that best fits your needs.

AMIS uses a standard seven-step

bidding process to form an agree-

ment to provide a product.  This

bidding process allows customers

to obtain products through a com-

mon market process, ensuring

that they are all purchased at fair

market prices.  All seven steps of

the negotiation process must be

completed successfully in order to

complete the transaction.

1. Request for quote. The RFQ

is the first step in the AMIS bid-

ding process.  A customer (or

customer agent) creates an

RFQ that specifies the desired

products or services, along

with a response date, and

sends it to a broker agent.  The

broker acts as a liaison, for-

warding the RFQ to each cell

that has “subscribed” to pro-

vide the requested product.

2. Receive quotes. Each cell

agent determines its ability to

complete the job according to

the customer’s RFQ specifica-

tions.  If a cell is able to meet

the customer’s requirements,

it creates a quote for the job.

Quotes contain estimated infor-

mation on the delivery date,

price, quality, and special char-

acteristics related to complet-

ing the job.  Cells return their

quotes to the broker, which

holds the quotes until the RFQ

response date has been

reached and then returns all

the quotes to the customer.

3. Select winner. When the time

has expired for the cells to sub-

mit quotes, the customer (or

customer agent) begins the

selection process.  The cus-

tomer selects the winner from

the submitted quotes by finding

the most desirable mix of cost,

time, quality, and special

characteristics, based on its

requirements for the job.

The customer sends an award

notification to the cell with the

best quote.

4. Winner confirms. The win-

ning cell accepts or rejects the

job depending on whether it

still has the capacity to do the

job.  The cell might reject the

job if it has accepted other jobs

between the time it prepared

the quote and received the

award.  If the winner rejects

the job, the customer offers it

to the cell with the next best

quote.  This continues until a

The best interest concept embodies

the metaphor of free market

behavior, as the cell, resource, and

job interact and compromise to

reach a solution that balances each

agent’s best interests.



©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 1155

cell accepts the job.  After the

winner accepts the job, the

other cells that submitted

quotes are informed of the

decision.  At that time, losing

cells are able to access data on

the quotes, which helps them

evaluate why they lost the job

and perhaps learn and modify

their behavior for future quotes.

5. Issue purchase order. After

a cell has confirmed the cus-

tomer order, the customer

authorizes the cell to begin

production by issuing a pur-

chase order to the cell.

6. Generate product. The cell

completes the work on the

product, delivers the product to

the customer, and sends an

invoice to the customer.

7. Make payment. The customer

ends the process by paying the

cell for the work done.

The seven-step process estab-

lishes a common approach for

business interaction between

cells.  The same process is

followed when a cell wants

to subcontract part of a job

to another cell.

Summary for Agent-Based
Manufacturing Case Study

Distributed Organizational Control

To be agile, large, centralized

manufacturing organizations

must be decomposed into sim-

pler, smaller business units that

are responsible for their own

business, financial, and produc-

tion success.  This distributed

organizational control allows

these smaller units to reorganize

and react quickly to changing

market conditions.  These smaller

units — cells — can easily be

reconfigured to maximize effi-

ciency or respond to a change in

the market.  Distributed organiza-

tional control enables the system

to respond locally to unexpected

failures or shutdowns by quickly

reallocating the necessary

resources. 

Furthermore, distributed organiza-

tional control can be based on the

concept of survival of the fittest.

Therefore, if a cell within an orga-

nization consistently fails to con-

tribute to the greater well-being

of that organization, that cell

ceases to exist.  On the other

hand, if every cell is successful,

the entire operation is successful.

Distributed organizational control

allows a successful manufacturing

operation to emerge from the

interaction of smaller units.

Another benefit of a distributed

organization is the ability to

quickly form ad hoc formations of

business units that achieve com-

mon business goals.  Here, indi-

vidual cells cooperate as a unit for

a common benefit — and then

dissolve when no longer needed.

The components of such a virtual

organization do not have to be

aligned with a physical organiza-

tion, adding another degree of

flexibility not found in traditional

systems.

Capacity Management

The more unpredictable the man-

ufacturing environment, the more

significant the problems associ-

ated with advanced scheduling.

For that reason, AMIS does not

use the concept of scheduling.

Instead, it manages the capacity

of the resources. 

As a business entity, each cell has

limited resources that have lim-

ited capacity.  All jobs in a cell are

temporarily put into the holding

capacity queue of that cell.  Then,

just before a job starts, each

resource in a cell bids on the job

in the queue.  Because the bid-

ding is done right before the job

starts, the chance of an unex-

pected event affecting the com-

pletion of the job is significantly

reduced. 

However, if a problem occurs

during the production process,

the system is not disabled.  This

is an important benefit of capacity

management.  Because the

resources in the cell are self-

loading and balance the load

among themselves, a job that

cannot be completed by a

resource is returned to the

cell’s queue for rebidding and

reallocation.  This dynamic alloca-

tion of jobs to resources greatly

reduces the effects of the unpre-

dictable nature of the shop floor.

Although this is not the only



VOL. 3, NO. 4 www.cutter.com/consortium/

1166 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

technique for capacity manage-

ment, it works well in the auto-

motive industry.

Market-Driven Economy

In a market-driven economy,

manufacturers build products

in response to market demand,

rather than in anticipation of

demand.  Businesses compete for

limited resources and customers,

but cooperate when it is benefi-

cial.  Change is constant as new

products emerge and customer

demands evolve.

AMIS relies heavily on the eco-

nomic laws of supply and

demand.  Rather than try to fore-

cast market demand and sched-

ule production based on rigid

plans, AMIS provides an architec-

ture that adapts to the dynamic

marketplace.  Both inside and

outside the cell, agents operate in

a profit-driven economy.  The

competition between cells or

resources will drive the market to

an equilibrium or market-clearing

price.  The producer’s need for

higher profit and faster production

times interact with the customer’s

need for lower prices and higher

quality.  These opposing forces

result in the best prices and prod-

ucts for everyone involved.

Case Study Conclusion

As designed by Greenstein,

AMIS provides a means for a

manufacturer to be more pro-

ductive and adaptive in respond-

ing to changing market demand.

Specifically, it will allow a manu-

facturer to:

� Increase machine (resource)

usage by better matching

capacity to workload

� Increase throughput by making

the right products at the right

time

� Reduce the number of late jobs

by better capacity planning and

monitoring

� Utilize/tune the correct

resource types and mix by

monitoring resource efficiency

� Create a flexible and dynamic

architecture that responds

rapidly to a continuously

changing market

� Enable an activity-based

costing (ABC) approach to

collect and calculate actual

production costs

� Reduce single points of failure

in production systems

Agent-based manufacturing is a

new way of thinking about and

applying information.  The pri-

mary benefits of the agent-based

approach are that they provide

dynamic, reliable, and agile sys-

tems.  As such, this approach will

enable organizations of the future

to accommodate rapidly changing

business conditions, increase

market responsiveness, lower

cycle times, increase productivity,

and better use their resources.

Most importantly, it will benefit

the bottom line.  In other words,

the agent-based approach will be

the way modern manufacturers

develop their systems to compete

in the 21st century.

CURRENT STATUS 
OF AGENT TECHNOLOGY

The emergence of agent technol-

ogy has stories similar to those

behind other technologies, such

as relational, OO, and GUI tech-

nologies.  One can expect some

of history’s lessons to repeat:5

� Agent technology is not a sin-

gle, new, emerging technology,

but rather the integrated appli-

cation of multiple technologies.

� Agents are not necessarily a

new, isolated form of applica-

tion.  Instead, they can add a

new set of capabilities to exist-

ing applications.

� Initially, agent functions will

emerge within applications,

but — with experience — will

become part of the operating

system or application

environment.

� Agent applications may

strengthen the human-

computer interaction.

Rather than try to forecast market

demand and schedule production

based on rigid plans, AMIS provides

an architecture that adapts to the

dynamic marketplace.  Both inside

and outside the cell, agents operate

in a profit-driven economy.



©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 1177

� Ultimately, applications that

do not exploit agent support

in the operating system will be

severely disadvantaged.

Although destined to achieve lofty

goals, the current state of agent

technology can be summarized

as follows:  

� It is still in an active research

stage.

� Isolated pioneer products are

emerging.

� The full set of technologies is

not yet available.

� The technologies are not yet

integrated with one another.

� There is no consensus on how

to support agents at the operat-

ing system level.

� Despite the hype, agent tech-

nology is not in widespread

use, nor has it been widely

accepted as an inevitable

trend.

� There are early adopters who

can demonstrate the value of

agent technology.

Current Usage of Agents

The agent industry is in an embry-

onic state.  Deployments of agent-

based systems and technology

are isolated and few, but exist

nonetheless — and are, in fact,

increasing.  Today, agents are just

beginning to be applied in a wide

range of applications.

Personal use. Currently, most

agent applications are for individual

use and include search-and-

retrieval agents, bots (another

name for agent), Web site person-

alization tools, and user-assistance

agents.  As the speed and capac-

ity of the personal computer

increases, agents will be intro-

duced as a way to schedule

appointments, perform file man-

agement, suggest ways of locating

information, manage the PC itself,

and perform other tasks.

Interest matching agents.

These are probably the most

used agents, and most users do

not even know they are using

them.  Interest-matching agents

are used by commercial Web

sites to offer recommendations,

such as, “If you liked ‘Frank

Sinatra’s Greatest Hits,’ you might

also like ‘Tony Bennett’s Songs

for a Summer Day.’”  Based

on Patti Maes’s work at MIT

Media Labs and later at Firefly,

these agents observe patterns

of interest and usage in order

to make recommendations.

They have been deployed at

Amazon.com and various CD

and video sales sites. 

Network and system manage-

ment agents. Telecommuni-

cations companies have been

the most active in this area and

are committed to the agent para-

digm.  Their goal is to use agents

to assist in complex system and

network management tasks

such as load balancing, failure

anticipation, problem analysis,

and information synthesis. 

Information, decision, and

logistic support agents. Agents

are already providing services to

manage, filter, select, prioritize,

reroute, discard, monitor, and

share many types of information.

Many companies (such as utility

companies and military organiza-

tions) now use agents for infor-

mation synthesis and decision

support.  These systems may alert

an operator to a possible problem

or provide information in support

of a complex decision.  They are

closely aligned to decision sup-

port systems from the traditional

AI community. 

Process control. Process con-

trollers are autonomous reactive

agents that ensure an organiza-

tion’s activities are carried out at

the level of individual compo-

nents, rather than by a centralized

controller.  Electricity transporta-

tion management and particle

accelerator control are some early

examples of these.

Manufacturing. As described

earlier in this report, work cells

can be grouped into flexible man-

ufacturing systems.  Here, agents

plan, negotiate, bid for work,

carry out the task, and so on.

Air-traffic control. Sydney airport

has developed a sophisticated

agent-based air-traffic control

system known as OASIS.  Agents

are used to represent each aircraft

that enters the airspace as well

as the various air-traffic control

systems in operation.



VOL. 3, NO. 4 www.cutter.com/consortium/

1188 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

E-commerce. Currently, 

e-commerce is driven almost

entirely by human interaction.

However, some of the commercial

decisionmaking can be placed

in the hands of agents.  The elec-

tronic marketplace could have

buying, brokering, bidding, and

selling agents for each product

being bought or sold.  Such an

approach will become an integral

part of business-to-business appli-

cations, not just for individual

shopping on the Web. 

Business process management.

Business processes can be

viewed as a community of negoti-

ating, service-providing agents.

Each agent can represent a dis-

tinct role or department in an

organization and be capable of

providing a variety of services.  For

example, multiagent supply-chain

systems would have agents play-

ing the roles of buyers, suppliers,

brokers, stock, orders, line items,

and manufacturing cells.  Oper-

ations systems would have

resource agents, material agents,

process agents, and so on.

Product design. Agents can

help designers (often in different

locations and with different com-

panies) design the components

and subsystems of a complex

product using many different

analysis tools.

KEY ISSUES FOR AGENT
TECHNOLOGY

Several important areas must

be addressed before a rich and

robust agent technology can exist.

Currently, one of the most impor-

tant areas for standardization is

agent communication.  If every

designer developed a different

means of communicating

between agents, our agent sys-

tems would be worse than a

tower of Babel.  Not only would

the content and meaning of a

communication likely be different,

but the means of communication

could occur in a variety of ways.

Agent mobility is also important if

we wish to benefit from the relo-

cation of agent processing.  The

issue of security must also be

addressed if we are to ensure that

both the agents and their environ-

ment are free from danger.  This

section discusses each of these

issues and indicates which stan-

dard services and specifications

might support them. 

Agent Communication Languages

When two people want to com-

municate, they need to choose a

common language and inter-

change medium — though, even

then, misunderstandings can

occur.  Agents, too, need a stan-

dard language and a set of con-

ventions that support agents in

identifying, connecting with, and

exchanging information with

other agents.  However, for

agents, it is even more important

to minimize any possible misun-

derstandings; otherwise, our IT

systems could get very confused.

Agent communication languages

(ACLs) enable agents to commu-

nicate in a clear and unambigu-

ous manner.  By standardizing

these ACLs, different parties can

build their agents to interoperate

both intra- and intercompany.  

An example of a simple point-to-

point communication between

two agents is illustrated in Figure

3.  Here, one agent is asking

another for the current price of

IBM stock.  This message, or

communication act, specifies

an “ask” speech act, the sender’s

identity (Joe), the message con-

tent (PRICE IBM ?price), the

address of the communication

(stock-server), the name of the

reply expected from the respond-

ing agent (IBM-stock), the lan-

guage in which the content is

specified (LRPROLOG), and the

set of the agreed-upon terms, or

ontology, that will be used in the

content exchange (NYSE-TICKS).

The responding agent replies

with the requested stock price,

along with its associated ACL

parameters.

One of the most important areas

for standardization is agent

communication.  If every designer

developed a different means of

communicating between agents, our

agent systems would be worse than

a tower of Babel.  Not only would

the content and meaning of a

communication likely be different,

but the means of communication

could occur in a variety of ways. 



©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 1199

Currently, two primary standards

for ACLs exist: 

� Knowledge Query and

Manipulation Language

(KQML). Network environ-

ments that support plug-and-

play processes are still quite

rare.  Most distributed systems

are implemented with ad hoc

interfaces between compo-

nents.  KQML is a language

and set of conventions that

support network programming

specifically for knowledge-

based systems and agents.  It

was developed by the ARPA-

supported Knowledge Sharing

Effort.  (See www.cs.umbc.

edu/kqml.)

� Foundation for Intelligent

Physical Agents (FIPA). FIPA

has been working to develop

and promote standardization in

the area of agent interoperabil-

ity since 1996.  FIPA’s ACL is a

high-level agent communica-

tion language that is based on

speech acts and is perceived

by many as an improvement

on KQML.  (See www.fipa.org.)

The speech acts that may be

specified (such as “ask” and

“reply” in Figure 3) are defined

by the ACL.  Some examples of

KQML speech acts (called perfor-

matives in KQML) include:

� Achieve — A wants B to

perform a certain task.

� Advertise — A registers as suit-

able for a particular request.

� Ask — A requests information

from B (ask-one or ask-all).

� Broker — A wants B to find

help to answer something.

� Delete — A wants B to remove

specific facts from knowledge-

base.

� Recommend — A wants the

name of an agent that supplies

an answer.

� Recruit — A wants B to request

an agent to perform a given

task.

� Reply — A answers B.

� Sorry — A cannot provide the

requested information.

� Subscribe — A wants any mes-

sages from B when they occur.

� Tell — A sends information.

ACLs provide a high-level format

for expressing communication

acts among agents.  The com-

munication detail, however, is

embodied in the content para-

meter, where the agent expresses

the actual question, reply, or

request.  The format of the content

parameter must be agreed upon

by both sender and receiver(s),

otherwise effective communica-

tion will not be possible.  

The language parameter helps to

some extent, because it specifies

a registered syntax form.  For

example, if Prolog were specified,

the agent would know that the

rules for content syntax must con-

form to the Prolog language.  The

Knowledge Information Format

(KIF) is one standard for agent

language syntax, and was devel-

oped by a consortium at the

University of Maryland.  Another

emerging approach is to use and

extend XML. 

Ontology Communication

The syntax rules of a language are

not enough to ensure clear com-

munication; an agreed-upon set of

terms is also required.  Certainly,

the syntax would define some

terms, but there are also user-

defined terms.  For example, to

ask for the number of clients that

Fujitsu has could be expressed as:

�� ����
���

�����

$���
%�������&��
%��������$����"��!��'�����(
%��������������)������
%�����)*�����!�)�����
%���
��
��#���+#+,
%������
��
-�")���.�(

$�����
%������������)������
%��������$����"��!��/01(
%���������&��
%��)�����)����!�)�����
%���
��
��#���+#+,
%������
��
-�")���.�(

Figure 3 — Simple point-to-point communication using 
an agent communication language.



VOL. 3, NO. 4 www.cutter.com/consortium/

2200 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

COUNT FUJITSU client
?integer.  The syntax is well

defined, but if one agent uses the

term “client” and the other only

knows “customer,” the two will

not communicate effectively —

even though both know that

something is supposed to be tal-

lied for Fujitsu.  Agents can have

different terms for the same

concept and identical terms for

different concepts.  A common

ontology, then, is required for

representing the knowledge from

various domains of discourse.

The purpose of the ontology para-

meter in an ACL is to define the

set of terms that will be used in

an agent communication.

The need for terminology stan-

dards is not new; it is a key

requirement for Electronic Data

Interface (EDI) and KQML.

Because agent communications

depend on ontology, such stan-

dards are now more critical than

ever.  As such, many organizations

and consortia are now being set

up to establish industry vocabularies,

such as RosettaNet (www.rosetta.

net), BizTalk (www.biztalk.org),

CommerceNet (www.commerce.

net), and Ontology.Org (www.

ontology.org).  Common ontology

representations use UML and XML

schema.

Message Transportation
Mechanism  

Agent communication can be

achieved in two ways:

1. Directly with each other

(logical connection), which

provides flexibility and free-

dom, but bypasses control

and security

2. Through the agent platform

(physical connection), which

resolves control and security

problems but requires logical

communications to be physi-

cally resolved via the agent

base software

Most agent systems use the

second option (see Figure 4),

because the agent platform

enforces control and security

at a system level.  With this

approach, the look and feel of

agents directly addressing other

agents can still exist, even though

all communications are still proc-

essed through the agent platform,

including communications to

traditional (legacy) systems.

In agent environments, messages

should be able to be scheduled as

well as event-driven.  They can be

sent in synchronous or asynchro-

nous modes.  Furthermore, the

transportation mechanism should

support both unique addressing

and role-based addresses (i.e.,

“white page” versus “yellow

page” addressing).  Lastly, the

transportation mechanism must

support unicast, multicast, and

broadcast modes, as well as such

services as broadcast behavior,

nonrepudiation of messages, and

logging.  (The agent platform will

be discussed in more detail in the

“Agent Architecture” section on

Page 26.)

Although message transportation

does not yet exist for agent-based

systems, it does exist in an OO

form.  With some enhancements

for the requirements of agent-

based environments (directly or

indirectly), the following technol-

ogy could be used: CORBA,

OMG Messaging Services, Java

Message Service, Remote Method

Invocation, Distributed COM, and

Enterprise JavaBeans Events.

	
��� 	
��� 	
��� 	
���

� � � �
��
����

	
���
��������

	
���
��������

�����������
�������

$�2
23��!3���(

+�������

������

+�������

������

��
������

��������

Figure 4 — Using the agent platform for communication and migration.6



©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 2211

Agent Interaction Protocols

Agents can interact in various

patterns called interaction proto-

cols (which are also known as

conversation or communication

protocols).  Each protocol is a

pattern of interaction that is for-

mally defined and abstracted

from any particular sequence

of execution steps.  

Figure 5 depicts a few more inter-

action protocols using multiple

agents: requester, provider, and

facilitator agents.  The facilitator

agent functions as a middleman.

For example in Figure 5 (a), the

facilitator receives a “subscribe”

request communication from a

requester who wishes to receive

messages on a particular topic.

Any time a provider agent sends a

communication to the facilitator

that fits the subscriber’s topic,

the facilitator passes on the

communication.

The facilitator in the recruiter

protocol in Figure 5 (b) receives

both “recruit” communications

from requesters and “advertise”

communications from providers.

When the facilitator finds a

match, it notifies the provider,

who then contacts the requester

directly.  In the broadcaster proto-

col in Figure 5 (c), an agent

requests the facilitator to broad-

cast a message to a number of

agents.  

Figure 6 illustrates a negotiation

protocol, in which a broker agent

sends out invitations to bid on a

job contract.  If a provider agent

wishes to participate in the negoti-

ation, it can respond with a bid.

Since many provider agents might

respond, the broker agent has to

decide which provider should

be awarded the contract.  Once

the contract has been sent to

the provider, the provider can

choose to confirm.  If the provider

declines, the broker must choose

another provider.  Such a pattern

could support various negotiation

scenarios, such as ordering

supplies, requesting equipment,

or obtaining human resources.

There are many other patterns

that provide basic communication

protocols.

Agent Mobility

Stationary agents exist as a single

process on one host computer;

mobile agents can pick up and

move their code to a new host

where they resume executing.

Mobile agents are able to change

�
�� ���� �

��4������

����

����

��������
��

$�(��� ��������������������� $ (����������

�������

��4������
����

����

��������
��

�

 ��������

�����
� ���

$�(�!����������

!�����

��4����

"���������

5�����6��

!�������������

��������

!��

�������

�������

��������

"���������

��������
����������

Figure 5 — Interagent communication using facilitator agents.

Figure 6 — Agent interaction protocol for negotiation.



platforms and environments;

stationary agents are not.  From

a conceptual standpoint, mobile

agents can be regarded as itiner-

ant, dynamic, wandering, roam-

ing, or migrant.  The rationale

for mobility is the improved per-

formance that can be achieved

by moving the agent closer to

the services available on the

new host.

Stationary agents must use the

network to exchange information,

primarily using the remote proce-

dure call (RPC), as illustrated in

Figure 7(a).  When a stationary

agent requires processing on a

different platform, it must employ

the services of another agent.

Here, a communication (or

request) conveys the intention to

invoke a specific operation (via an

RPC).  The operation is then exe-

cuted, and the results (or reply) is

returned to the requesting agent.

Thus, the use of stationary agents:

� Reduces the complexity

required for mobility

� Encourages specialization

within platforms

� Employs well-established

protocols

� Supports closed-environment

philosophy

However, the stationary approach

also:

� Results in performance prob-

lems in those situations requir-

ing high volume or frequency

� Results in processing inefficien-

cies because having many spe-

cialized agents creates more

work than having a single

mobile agent

� Reduces effectiveness when a

connection is lost

In contrast, mobile agents use the

network to exchange information

primarily by changing platforms

and environments using the

remote programming technique.

When a mobile agent requires

processing on a different platform,

it physically relocates to the

desired server, as illustrated in

Figure 7(b).  This requires that

all structural and behavioral prop-

erties of the agent be transferred

during migration and that any

environmental differences be

changed or accommodated.

The big issues here are how

much time is required to prepare

for migration, how much data

is actually transferred, and the

performance of the transfer

communication.  

Migrations can be handled by the

agent.  Although this reduces the

complexity of the runtime envi-

ronment, it increases agent com-

plexity.  In contrast, migrations

can be transparent to the agent,

which reduces agent complexity

while increasing the complexity

of the runtime environment.  The

advantages of mobile agents are

that they:

� Reduce network load

� Reduce network-related delay

� Reduce resource usage of

clients

� Enable distributed problem

solving

� Support asynchronous,

autonomous processing

� Promote reconfigurable 

or customized services

VOL. 3, NO. 4 www.cutter.com/consortium/

2222 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

�

� ��

�
������������	��
��

������������
�����	���

�������� �������� �������� �������� �������� ��������

��
��� ��
���
�	����	�
��	���	���������
������������
�����	���

�������
���	���������
������������	��
��

Figure 7 — Stationary and mobile agents.6



� Make active behavior scenarios

conceivable

� Enhance decentralization

options

The disadvantages of mobile

agents are that they:

� Involve a number of security

issues, such as the identifica-

tion and authentication of

agents, protection from

destructive agents, and the

assurance of the agent’s will-

ingness and ability to pay

� Require transport/migration

mechanisms be added to soft-

ware environments, thus

increasing their complexity

� Have no industry standards for

agent environments, migration

approaches, or measuring and

billing resource consumption

� Have not yet been used in an

environment containing a large

number of mobile agents

Agent Security7

Agents are software entities that

often run in a distributed comput-

ing environment and interact with

many other software entities,

including other agents.  When

software runs in a distributed

environment, security issues are

numerous.  The possibility of

encountering security problems

increases in open environments,

such as the Internet or a virtual

private network, or in any environ-

ment where all the entities are not

known, understood, and adminis-

tered by a single group.

Various types of security risks are

described below.  Many of these

risks are inherent to distributed

computing environments, particu-

larly when software passes mes-

sages that can be intercepted,

modified, or destroyed.  Although

this is a threat to agent systems, it

is also a threat to any software

system that depends on messages

being passed reliably.  Another

risk centers on whether the soft-

ware can assume that it is using

trustworthy services.  

Generally, the word security refers

to the actions taken to ensure that

something is secure.  If the item is

free from danger, it can not be

taken, lost, or damaged.  In prac-

tice, security is usually applied

only to somewhat valuable items,

because implementing security

has associated costs.  This is true

both in the everyday world, where

we protect our cars or homes

from theft (but not a disposable

pen) and in the world of comput-

ing, where we may protect some,

but not all, company resources.

Security policy refers to how

access to valuable resources is

controlled.  For example, a com-

pany may have a policy about

which groups can access which

data, when certain types of pro-

cessing jobs can run, or whether

outside entities can connect to

the company network.  Agent sys-

tems will also require security

policies that may control where

agents can run, what they can do,

and with what other entities they

can communicate.

Security policies are usually based

on identity, something that serves

to identify or refer to an entity.  In

this way, an agent could be

referred to by its name, a role that

it is playing, the fact that it is a

member of some organization,

and so on.  An agent, then, can

have multiple forms of identity.

For example, a particular agent

could simultaneously be a pur-

chasing agent working on behalf

of user Rolf Smith, be playing the

role of a bidder in a negotiation

with E-Widgets, have its software

composed of elements from com-

pany ExDeus, and have the serial

number 98734501.  Each of these

identities might be important in

different interactions.

Identity is based on a credential,

a set of data that can be validated

by a third party to prove that the

entity is what it says it is.  For

example, when users log into a

computer system, they often enter

both a username and a password;

the latter is the credential that is

©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 2233

Agents are software entities that

often run in a distributed computing

environment and interact with many

other software entities, including

other agents.  When software runs

in a distributed environment, security

issues are numerous.



validated to indicate that they

really are that username.  Other

common mechanisms for identity

and credentials are X.509 certifi-

cates and PGP keys.

Types of Security Risks

Here are some security threats

that could happen in multiagent

systems:

Unauthorized disclosure —

a breach in the confidentiality of

an agent’s private data or meta

data.  For example, an entity

eavesdrops on the interaction

between agents and extracts infor-

mation on the goals, plans, capa-

bilities, or other information that

belongs to the agents.  Or, an entity

can probe the running agent and

extract useful information.

Unauthorized alteration — the

unauthorized modification or

corruption of an agent, its state,

or data; for example, the content

of messages is modified during

transmission, or the agent’s

internal value of the last bid is

modified.

Damage — destruction or sub-

version of a host’s files, configur-

ation, or hardware, or of an agent

or its mission.

Unauthorized copy and replay

— an attempt to copy an agent or

a message and clone or retrans-

mit it; for example, a malicious

platform creates an illegal copy or

a clone of an agent, or a message

from an agent is illegally copied

and retransmitted.

Denial of service — an attack

that attempts to deny resources

to the platform or an agent.  For

example, one agent floods

another agent with requests, ren-

dering the agent unable to provide

its services to other agents.  

Repudiation — an agent or agent

platform denies that it received

or that it has sent a message or

taken a specific action.  For exam-

ple, a commitment between two

agents as the result of a contract

negotiation is later ignored by one

of the agents.  That agent denies

the negotiation has ever taken

place and refuses to honor its part

of the commitment.

Spoofing and masquerading —

an unauthorized agent or agent

platform claims the identity of

another agent or agent platform;

for example, an agent registers as

a directory service agent and

therefore receives information

from other registering agents.  

Message Passing

In systems where agents pass

messages, the importance of

avoiding message alteration or

disclosure is described above.  If a

message is altered, it might pro-

vide incorrect information or

transmit a dangerous action.  If a

message can be read by or dis-

closed to other entities, the other

entity may use the acquired data

inappropriately. 

Message alteration is usually

avoided by providing a mecha-

nism for authenticating the mes-

sage.  Most of the techniques for

doing this are based on public/

private key pair technologies,

such as X.509 certificates.

Additional information is sent

with the message that allows

the receiver to validate that the

message has not been changed.

Message disclosure is avoided

by encrypting the message,

which again is based mostly

on public/private key pair

technologies.

For both threats, the authentica-

tion or encryption can occur

either by encrypting the message

itself or by sending it through a

transport that provides authentica-

tion or encryption services.

Other threats related to message

passing include copy and replay,

spoofing and masquerading, and

repudiation.  Both in copy and

replay and in spoofing and mas-

querading, an agent may assume

the identity of another agent.

Using this false identity, it can

communicate with another agent

in order to request an inappropri-

ate action.  Many agent systems

use relatively simplistic naming

schemes (identities) with no addi-

tional credentials.  Therefore, a

message claiming to be from

“Joe” cannot be validated.  

VOL. 3, NO. 4 www.cutter.com/consortium/

2244 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE



This set of problems can be

solved in various ways.  By tagging

messages with credentials, the

message can be sent in a way that

ensures authentication.  Thus, the

message can be sent without the

possibility of tampering by a third

party.  Tagging messages with cre-

dentials can also help avoid repu-

diation.  If a message is signed

using a credential, the signing

agent cannot later deny that it

sent the message.

System Components Dealing 
with One Another

Agents can use agent platforms to

provide services.  They can also

interact with well-known services,

such as a directory service that

helps them locate other agents or

an ontology service that helps

them look up ontologies.  When

two systems components interact,

several risks can occur: the two

most likely being damage or

spoofing and masquerading. 

In the damage scenario, the agent

may do malicious or inappropriate

things to the host system, such as

corrupting or deleting files.

Therefore, the agent platform may

want to control which agents can

take which actions.  Typically, the

agent would offer a credential

that identifies it to the agent plat-

form.  After validating the creden-

tial, the agent platform would use

a security policy (based on the

agent’s identity) to determine

what actions the agent could take

and would enforce that policy.

This is very much like the access

control lists found in most operat-

ing systems.  However, agent sys-

tems probably want to control

much more than simply reading,

writing, and running files.  They

might want to control message

sending, usage of various

resources, when and where an

agent can move, and whether a

moving agent can run on this

platform. 

Just as the agent platform may

want to validate what entity it is

dealing with, an agent may want

to validate that it is dealing with

an agent platform it knows to be

genuine.  Agent platforms and ser-

vices could pretend to be “legiti-

mate” but, in fact, have some

dangerous behavior, such as

recording message transmissions

before encryption, cloning copies

of the agent for its own purposes,

or providing false information.

Other Risks to Which Agents 
Can Be Exposed

In constructing software for an

agent, certain types of risks must

be addressed to ensure that the

following things cannot occur:

� Viewing the private security key

of the agent

� Viewing the private data of the

agent (i.e., the highest bid an

agent is willing to make on a

product)

� Invoking private methods in the

agent

� Designing public methods in

such a way that permits secu-

rity risks

More Security Considerations

When designing agent systems,

the following aspects of security,

security policy, and identity should

be considered:

� Agents and agent platforms

can have multiple credentials.

Multiple credentials reflect the

reality that we have multiple

roles.  Users may have creden-

tials as part of several organiza-

tions, as an individual, as the

owner of multiple credit cards,

and so on

� Agents can have their own

credentials.  They may also

have credentials for the user

that they represent in an 

e-commerce application

� Agents should not be created

that can act anonymously.  For

example, users may want to

obtain data about drug or alco-

hol treatment without revealing

their identity.  Obviously, sites

can choose to reject these

agents if their security policies

do not allow interaction with

anonymous entities.

� All aspects of security need to

be managed

� Traceability of actions can be

useful

� Using a lease model on any

credential can be helpful.  In a

lease model, credentials expire

©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 2255



after a certain period of time

but can be renewed from a

credential authority.  This con-

trol can be a very effective

way to clean up credentials in

a system that uses relatively

short-lived agents.  Requiring

long-lived agents to renew their

credentials is also useful,

because when an entity with

bad credentials is forced to

renew, it will be rejected and

shut down

� Identity and credentials are

also useful for building reputa-

tion services.  Such services

provide a way to determine

whether a particular entity has

behaved responsibly

Technologies Currently Being Used

Almost all of the systems being

built today are being built with:

� Programming language: Java

or C++

� ACL: KQML or FIPA ACL

� ACL content: represented as

strings or XML documents or

using a content language such

as KIF or SL1

� Movement for mobile agents:

most current systems use Java

serialization

The first commercial toolsets for

building agents have entered the

market during the past year.

Some can be purchased, others

downloaded free.  These agent

building systems vary widely in

functionality and do not adhere to

any standards.  Agents built in one

system will not work in others,

nor is there uniform support for

communications protocols across

these tools.  However, the OMG’s

Agent Working Group and FIPA

are currently working on stan-

dards for agents and agent-based

systems.  Table 1 gives an

overview of commercial agent

systems available at the time

of this writing.  For more informa-

tion on the items in this table,

see www.agentbuilder.com/

AgentTools/index.html.  Table

2 (on page 28) lists company

involvement by category.

AGENT ARCHITECTURE

For the most part, agents will be

deployed within conventional

enterprises and will draw on the

enterprise for many services.

CORBA provides a rich source of

services and a proven architec-

ture.  This section provides a

framework for considering how a

system supporting agents might

draw on CORBA services and

facilities.  The architectural basis

for this discussion will be the FIPA

architecture.8 The FIPA agent

platform (AP) provides a good

construct from which to discuss

the enterprise-related issues in

agent deployment and is summa-

rized in Figure 8 (on page 28). 

Agent Platform

The key element to the enterprise

architecture is the AP, which pro-

vides an infrastructure in which

agents can be deployed.  An agent

must be registered on a platform

in order to interact with other

agents on that or other platforms.

Minimally, an AP consists of an

agent management system and

an agent platform communication

channel.  

FIPA does not specify the physical

nature of a platform, however,

two cases should be considered:

that of a single host and that of

multiple processors deployed as a

“virtual” platform.  If the platform

is virtual, having it fulfill several

requirements would be wise.  It

should have:

� High-speed communications

� A single agent management

system

� A single agent platform security

manager

These last two requirements

make the agent system easier to

use.  From the system perspec-

tive, the lifecycle and security of

all agents in a given platform is

controlled by a single entity: the

agent management system.  From

the perspective of a human (or

agent proxy), the platform itself

should also be controlled by a

single entity. 

Agent Management System

The agent management system

(AMS) can be implemented as

a single agent that supervises

access to and use of the agent

platform.  AMS maintains a

VOL. 3, NO. 4 www.cutter.com/consortium/

2266 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE



directory of logical agent names

and their associated transport

addresses for an agent platform.

AMS is responsible for managing

the lifecycle of the agents on the

platform; its actions include:

� Authentication

� Registration

� Deregistration

� Modification

� Query platform profile

� Search

� Mobility requests

� Control of agent lifecycle

AMS also provides two kinds of

directory services to other agents:

white pages and yellow pages.

White page service is simply a way

of locating individual agents.

Yellow pages offer a way of locat-

ing agents for a given category.

Agents may register their services

with the directory or query it to

determine what services are

offered by other agents.  For exam-

ple, an agent might register itself

as a rare art broker or punch press

resource for other agents (includ-

ing human) to contract its services. 

Agent Platform Security Manager

The agent platform security

manager (APSM) is responsible

for maintaining security policies

for the platform and infrastructure.

APSM is responsible for runtime

activities such as communications,

transport-level security, and audit

©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 2277

Product Company Language Description
AgentBuilder Reticular Systems,

Inc.
Java Integrated agent

and agency
development
environment

AgenTalk NTT/Ishida LISP Multiagent
coordination
protocols

Agent
Development
Environment

Gensym Java Environment

Agentx International
Knowledge
Systems

Java Agent
development
environment

Aglets IBM Japan Java Mobile agents
Concordia Mitsubishi Electric Java Mobile agents
Grasshopper IKV++ Java Mobile agents
Infosleuth Microelectronics

and Computer
Technology
Corporation

Java, Perl, Tk/tcl Cooperative
information agent
environment

iGEN CHI Systems C/C++ Cognitive agent
toolkit

Intelligent Agent
Factory

Bits & Pixels Java Agent
development tool

Intelligent Agent
Library

Bits & Pixels Java Agent library

JACK Intelligent
Agents

Agent Oriented
Software Pty. Ltd.

JACK Agent
Language

Environment

Jumping Beans
Engineering

Ad Astra
Engineering, Inc.

Java Mobile agents

LiveAgent AgentSoft Ltd. Java Internet agent
construction

Microsoft Agent Microsoft
Corporation

Active X Interface creatures

Pathwalker Fujitsu Java Agent
development tool

Swarm Swarm
Development
Group

Objective C, Java Agent simulator

Versatile
Intelligent Agents

Kinetoscope Java Agent building
blocks

Voyager Object Space Java Agent-enhanced
object request
broker

Table 1 — Overview of Commercial Agent Systems



trails.  Security cannot be guaran-

teed unless, at a minimum, all

communication between agents

is carried out through APSM. 

APSM is responsible for negotiat-

ing the requested inter- and intra-

domain security services with

other APSMs in concert with the

implemented distributed comput-

ing architecture, such as CORBA,

COM, and DCE, on behalf of the

agents in its domain.  APSM is

responsible for enforcing the secu-

rity policy of its domain, and can,

at its discretion, upgrade the level

of security requested by an agent.

The APSM cannot downgrade the

level of services requested by an

agent, but it must inform the agent

that the service level requested

cannot be provided.

Agent Platform Communication
Channel

All agents have access to the

agent platform communication

channel, which provides a path

for basic interchange among

agents, agent services, AMS, and

other agent platforms.  It must at

least support Internet Inter-ORB

Protocol.  Agents can reach other

agents on any number of other

platforms through the agent com-

munication channel.  Access to

agents outside of the local name-

space could be supported by the

CORBA Trader Services.

CONCLUSION

Agents and agent-based technology

are an evolution, not a revolution

— emerging both from and with

VOL. 3, NO. 4 www.cutter.com/consortium/

2288 DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

Table 2 — Some Companies Involved in Agent Software

Languages
❑  Microsoft, Inc.
❑  General Magic, Inc.
❑  Sun, Inc.
❑  Vertel, Inc.
❑  Agentsoft, Inc.
❑  First Virtual Holdings, Inc.
 Development environments
❑  Agentsoft
❑  Autonomy
❑  Crystaliz
❑  Firefly Network
❑  FTP Software
❑  Fujitsu
❑  Gensym
❑  IBM
❑  KYMA Software
❑  MCC
❑  Microsoft
❑  Mitsubishi
❑  ObjectSpace
❑  Oracle
❑  Reticular Systems
❑  Toshiba
❑  Blackboard Technology

❑  Lotus Development Corp.
❑  Neuron Data, Inc.
 Personalization
❑  Broadvision, Inc.
❑  Guideware, Inc.
❑  Agnetsoft, Inc.
❑  Wisewire, Inc.
❑  Aptex, Inc.
❑  Vignette, Inc.
❑  Firefly, Inc.
 Research and development
❑  British Telecom
❑  Oracle, Inc.
❑  Digital Equipment Corp
❑  AT&T
❑  Apple Computer, Inc.
❑  Logica, Ltd.
❑  Siemens
 Class libraries
❑  Agentsoft, Inc.
❑  IBM, Inc.
❑  General Magic, Inc.
❑  Objectspace, Inc.
❑  FTP Software, Inc.
❑  Crystaliz, Inc.

�����
����	�
���
��
�
�����

��������������
���	�
��
�������

�����
����������
������

����	�
����������
���
���������
���������
!�������������������$	��(
)��������������� )�9����:������
)������������������� )�
�
���������
)���
��������� )��� �����

���	�����������������������������������
����������������
���������������
��
�������
������
5���*����

����
�
���������������	�
���
����	���
���
���������3�����������������
����������������������3�����������
������

������������������������
+ ;�����������6�����

Figure 8 — The agent platform: an infrastructure for deploying agents.



today’s technology.  Currently,

agents, objects, relational data-

bases, embedded systems, and

so on have their own niches.  As

stated earlier, together they can

orchestrate rich systems that none

of these technologies alone could

provide.  

Agents will move into the main-

stream of personal and corporate

computing during the next three

years, particularly in utilities,

banking, healthcare, and tele-

communications.  Although

agent technology itself is not a

revolution, its usage will be revo-

lutionary.  Some of the major

opportunities for agents include

the following:

� They will constantly scan and

collect data on their own inter-

nal processes, products, and

services to identify new oppor-

tunities and markets as well as

potential threats, risks, and

challenges.

� They will sense changes in the

global marketplace with their

suppliers, vendors, customers,

clients, and competitors; adapt

to changes made by regulators;

and learn from these changes.

� They will establish huge knowl-

edge pools of products in order

to filter, interpret, and present

data to management in new

ways.

� They will be an engine of con-

tinuous change, adapting to the

market and rapidly delivering

quality products and services

at lower cost per unit.

� Their importance in decision-

making will grow enormously.

� Solving large combinatorial

optimization problems will be

one of the most important uses

of agents.

Some other issues to consider

include:

� First-generation agent products

are now being released.

Future products will include

intelligence, personalities, and

interactive features.

� Issues such as privacy, access

to data, and other legal ele-

ments need to be addressed.

� As agents become more

accepted, they will begin to

communicate with each other

in multiagent agencies.

ACKNOWLEDGEMENTS

The author would like to

acknowledge Dr. David Greenstein

(dgreenst@tir.com) for providing a

comprehensive description of his

agent-based AMIS case study.  I

would also like to thank Kate Stout

(kate.stout@sun.com) for sharing

her expertise in the area of agent-

based security.

REFERENCES

1Resnick, Mitchell.  Termites,

Turtles, and Traffic Jams:

Explorations in Massively

Parallel Microworlds, MIT Press,

Cambridge, Massachusetts, 1997.  

2Figure courtesy of Van Parunak

(ERIM, Inc., vparunak@erim.org).

3Waldrop, M. Mitchell.  Complexity:

The Emerging Science at the Edge

of Order and Chaos.  Simon and

Schuster, New York, 1992.  

4Greenstein, David, and Kelly

Thomas.  “Intelligent Agents for

an Emergent Industrial Ecology.”

Intelligent Manufacturing Systems,

Proceedings of IJCAI, AAAI 1995.

5Caglayan, Alper, and Colin

Harrison.  Agent Sourcebook.

John Wiley & Sons, New York,

1997.

6Brenner, Walter, Rüdiger

Zarnekow, and Hartmut Wittig.

Intelligent Software Agents:

Foundations and Applications.

Springer-Verlag, Berlin, 1998.

7Stout, Kate, adapted from her

contribution to the “Agent

Technology Green Paper,” Object

Management Group Agent

Working Group, 2000.

8“Foundation for Intelligent

Physical Agents FIPA98 Agent

Management Specification.”

Geneva, Switzerland, October

1998. (www.fipa.org)  

©2000 CUTTER CONSORTIUM VOL. 3, NO. 4

EXECUTIVE REPORT 2299



DOUGLAS BARRY
on storing objects using DBMSs

Douglas Barry is principal of Barry &

Associates, Inc., which he founded in

1992, and executive director of the

Object Data Management Group, an

industry standards organization.  Mr.

Barry has worked with DBMS technol-

ogy for more than 20 years and with

object technology and databases since

1987.  He has been actively involved in

creating and promoting standards for

storing objects in databases.  Mr. Barry

specializes in the strategies, technolo-

gies, and products associated with

objects and object-relational database

applications.  

PENG BOEY
on component-based architecture

for e-business applications 

Peng Boey is vice president of

Consulting Services with NetNumina

Solutions.  With more than 10 years of

IT experience, Mr. Boey is an expert in

distributed systems architecture.  He

has provided professional advice to

Global 1000 companies on how to

design, build, and deploy component-

based architectures for e-business

applications.  He has been a leader

in creating the VIEW methodology, a

revolutionary architecture process

that utilizes the latest enabling tech-

nologies for building mission-critical 

e-business systems for the Internet, as

well as for intranets and extranets.

Currently, Mr. Boey is conducting

research on developing component

frameworks for rapidly building 

e-business solutions.  

THEODORE R. BURGHART
on developing heterogeneous client-

server and distributed systems 

Theodore Burghart is principal engi-

neer at Quoin, Inc.  He has extensive

experience with heterogeneous client-

server and distributed systems design

and development.  His projects have

included communications, database,

technical, and process control services

implementations.  Mr. Burghart is

experienced in cross-platform enabling

technologies, such as CORBA as well

as with LDAP, and with relational,

object/relational, object-oriented,

and full-text databases.  Currently, 

Mr. Burghart collaborates with develop-

ment teams to define and construct

CORBA-based infrastructures.  In addi-

tion, Mr. Burghart provides technology

training and consulting services to

clients in the healthcare, insurance,

and financial services industries.

RICHARD DUÉ
on component development methods

and project management

Richard T. Dué is president of Thomsen

Dué and Associates Limited.  He

specializes in object and component

development methods and in object

technology project management.  

Mr. Dué has developed and presented

information technology training cours-

es in 28 countries to participants from

hundreds of organizations.  He is a

member of the OPEN methodology

consortium and has been actively

involved in developing business object

standards.  Mr. Dué is a frequent con-

tributor to the Cutter IT Journal, and

has held various management posi-

tions in the public and private sector 

in the US and Canada.

DAVID FRANKEL
on Java- and Internet-based

component architectures

David Frankel is chief scientist at

Genesis Development.  He assists

clients in developing and customizing

advanced component architectures

based on CORBA, DCOM, Java, the

Internet, and related technologies.

Mr. Frankel has been instrumental in

formalizing advanced component

architecture to support large-scale

software development and systems

integration.  He is a member of the

OMG Architecture Board, was a

major contributor to the CORBA/COM

Internetworking standard, and is

cochair of the OMG Business Object

Initiative Working Group.  

MAX GRASSO
on distributed secure

transaction systems

Max P. Grasso is chief technology

officer of NetNumina Solutions.  He

is a recognized expert on distributed

secure transaction systems with a

focus on high reliability, mission-

critical applications.  He also has

significant expertise in the manage-

ment issues involved with deploying

such systems.  Mr. Grasso has been at

the forefront of distributed computing

technology since its beginning, both

as a member of the Open Software

Foundation’s team and as a cofounder

of the Open Environment Corporation.

As CTO of Internet Business Solutions,

his mission was building the technol-

ogy for the execution of secure distrib-

uted transactions on the Internet.  In

that role he designed a framework for

business-to-business transactions and

interenterprise transactional work-

flows.  Mr. Grasso has overseen the

architecture and the design of large

systems in the telecommunication,

financial, banking and gaming industries.

MICHAEL GUTTMAN
on transitioning to enterprise

component technology

Michael Guttman is chief technical

officer and cofounder of Genesis

Development, where he assists

clients in planning their transitions

to enterprise component technology.   

Mr. Guttman, who has been a pioneer

in the use of component and object

technology for large-scale distributed

systems, is a specialist in advanced

component architectures.  Mr. Guttman

has more than 20 years of experience

in software development and has been

a major contributor to several OMG

standards, including CORBA 1.0,

CORBA IIOP, and CORBA/COM

Internetworking.  

CUTTER CONSORTIUM DISTRIBUTED
COMPUTING ARCHITECTURE/E-BUSINESS
ADVISORY SERVICE
SENIOR CONSULTANTS



CURT HALL
on data warehousing and data 

management strategies

Curt Hall, editor of Business Intelligence

Advisor, is an expert on data warehous-

ing technologies and products.  His

recent study on the corporate use of

data warehouses and the issues associ-

ated with data warehousing projects

has resulted in the in-depth report Data

Warehousing for Business Intelligence.

Mr. Hall is the coauthor of Intelligent

Software Systems Development and a

contributing editor to James Martin

and James Odell’s Object-Oriented

Methods: Pragmatic Considerations.

He is the former associate editor of

Object-Oriented Strategies and

Application Development Strategies.

Mr. Hall’s work has appeared in tech-

nical journals such as IEEE Expert.

He has also been an organizer of and

speaker at industry events such as

ObjectWorld. 

PAUL HARMON
on distributed computing and

component development for 

business applications

Paul Harmon is a well-known consul-

tant and analyst of software trends.

Mr. Harmon has been very influential

in the movement to commercialize

object and component technologies

for business applications.  Mr. Harmon

recently completed a study of the

acceptance of object technology and

components in corporate development

groups.  As editor since 1991 of

Component Development Strategies,

published by Cutter Information Corp.,

Mr. Harmon has studied the commer-

cial and business applications of

object technology.  He has also been

the editor of three other Cutter

Information Corp. newsletters over the

years: Intelligent Software Strategies,

Application Development Strategies,

and Business Process Strategies.

Mr. Harmon is a frequent speaker on

the strategic impact of new software

technologies on business.  Mr. Harmon

is the coauthor of several books.

IAN HAYES
on e-business strategy

Ian Hayes is founder president of Clarity

Consulting, Inc., where he provides

strategic consulting on issues affecting

the management and support of corpo-

rate business systems.  Mr. Hayes has

advised dozens of Fortune 1000 com-

panies on a variety of IT issues, includ-

ing major Y2000 initiatives, e-business,

insourcing, outsourcing, and process

improvement.  Mr. Hayes is a regular

contributor to the Cutter IT Journal

and is on the editorial advisory board of

the Enterprise Application Integration

Journal.  Mr. Hayes was a cofounder of

Language Technology, Inc., an early

software redevelopment product ven-

dor, and a practice manager at Keane,

Inc. before founding Clarity Consulting

in 1993.

J. BRADFORD KAIN
on distributed business components

Brad Kain is CEO and cofounder

of Quoin, Inc., providing consulting,

mentoring, and software development

services in object and distributed

technology.  Mr. Kain has used object-

oriented analysis and design since

1987.  He has helped define the use

of object and distributed technology

to realize distributed business compo-

nents.  This work has involved the

specification of sophisticated intranet,

Java, and distributed applications.  

Mr. Kain has managed the technical

direction and development teams of

distributed application infrastructure

development projects for managed

care, client management, general

ledger, securities trading, marketing,

engineering and manufacturing design,

and other applications.  Mr. Kain has

participated in the work of the Object

Management Group’s Technical

Committee on CORBA and the specifi-

cation of domain services.  

ANDRÉ LECLERC

on formal specification approaches

to the development of information

and management systems

André Leclerc is the director of devel-

opment for Technology Development

Associates, Inc., where he is active in

developing, training, consulting and

mentoring object-oriented information

systems.  Mr. Leclerc’s interest is in 

formal specification approaches to 

the development of information and

management systems.  In 1984, Mr.

Leclerc was appointed vice president

of Yourdon, Inc.  Following his tenure

at Yourdon, Inc., he served as vice

president of Kenneth G. Moore and

Associates.  Mr. Leclerc has authored a

book on structured PL/1, and a variety

of articles, seminars, and tutorials on

information systems, including the

OO seminars for Ptech, Inc.  

JEAN PIERRE LEJACQ
on architecture and implementation

of distributed systems

Jean Pierre LeJacq, an experienced

architect, designer, and implementer 

of distributed systems, is CTO and

cofounder of Quoin, Inc., providing

consulting in object and distributed

technologies to clients worldwide.  

Mr. LeJacq is the architect and

technical lead for the development of

an infrastructure for distributed applica-

tion development, and is responsible

for the design and implementation of

a CORBA-based system.  He has

extensive experience in Java, C++,

and UNIX-based systems, and in a

variety of design methods.  Mr. LeJacq

has been using object-oriented lan-

guages and modeling systems since

1984 for clinical, managed care, client

management, engineering and manu-

facturing design, and aircraft control

simulation applications.  

JASON MATTHEWS
on transitioning to enterprise

component technology

Jason Matthews is cofounder of

Genesis Development.  He has nearly

20 years of technical and management

experience in software development

and related professional services. 

Mr. Matthews is a pioneer in the use

of component/object technology for

large-scale distributed systems and

the Internet, and a specialist in the

process of transitioning large organi-

zations to component technology.  

Mr. Matthews has managed end-user

information systems organizations

and the development of commercial

software products.  He has been a

consultant to a wide range of indus-

tries, including financial services,

insurance, healthcare, manufacturing,

telecommunications, and energy.  

SENIOR CONSULTANTS



JAMES ODELL
on object-oriented methodologies

and agent technology

James Odell was an early innovator of

information engineering methodolo-

gies, and has spent most of his 30-year

career developing better methods to

understand, communicate, and man-

age system requirements.   Working

with the Object Management Group

(OMG) and other major methodolo-

gists, Mr. Odell continues to innovate

and improve object-oriented methods

and techniques.  He participated in the

development of the UML, and is the

cochair of both the OMG’s Object

Analysis and Design Task Force as well

as the Agents Work Group.  Formerly, 

Mr. Odell was the principal consultant

for KnowledgeWare, Inc., where he

pioneered the concepts of data mod-

eling, information strategy planning,

and CASE technology application.  

Mr. Odell has coauthored several books

with James Martin, including the most

recent title Object-Oriented Methods: 

A Foundation, UML Edition.  

CHRIS PICKERING
on e-business trends and strategies

Chris Pickering, president of the

research and consulting firm Systems

Development, Inc., analyzes industry

practices.  Mr. Pickering’s areas of

focus include information architecture,

business-IT alignment, technology

acquisition and deployment, organiza-

tional change, system modeling, and

software practices.  He is the author of

the survey-based study E-Business

Trends, Strategies, and Technologies

and the periodic Survey of Advanced

Technology, which tracks the use of

advanced information technologies,

assesses the effectiveness of that use,

and identifies the benefits and hazards

of using the leading technologies.  He

then applies the lessons learned from

the research to helping clients maxi-

mize their information technology

investments.  

JOHN R. RYMER
on tools, middleware, and 

application development 

for distributed systems

John Rymer is president of Upstream

Consulting, which he founded in 1997.

Mr. Rymer is a well-known strategy

advisor and a veteran industry analyst.

Since 1989, Mr. Rymer has developed a

strong track record of helping software

companies solve difficult market and

technical problems.  He specializes in

application development technology

for distributed systems, including tools

and middleware.  Mr. Rymer is a former

vice president and founding analyst at

Giga Information Group, Inc., where he

was responsible for tracking applica-

tion development technology and prod-

ucts.  Mr. Rymer has been a keynote

speaker at OOPSLA, Networld +

Interop, ObjectWorld, and other

industry conferences.

GREG SABATINO
on architecting and implementing

highly scalable distributed 

e-business solutions

Greg Sabatino, cofounder of

NetNumina Solutions, specializes

in the architecture and implementation

of highly scalable distributed e-business

solutions.  Mr. Sabatino’s career has

centered on the training, support, and

delivery of distributed computing archi-

tectures and applications for IT organi-

zations worldwide.  His efforts focus on

enabling organizations to successfully

integrate and employ emerging tech-

nologies in order to realize a strategic

advantage.  Mr. Sabatino’s experience

spans the retail, petrochemical,

telecommunications, pharmaceutical

and, especially, finance industries.  

Mr. Sabatino contributes to several

industry publications and speaks at

conferences on a variety of distributed

computing issues.

KENT SEINFELD
on enterprise information

architecture development

Kent Seinfeld is the founder of Enright

Consulting, a small group of senior IT

consultants.  Mr. Seinfeld specializes in

enterprise information architecture

development.  Mr. Seinfeld is a former

senior vice president of IT and served

in three different positions with

CoreStates Bank.  He was the founder

and manager of the Technology

Planning and Research group at

CIGNA, a global insurance and financial

service company, where he was

responsible for computing standards,

security policy, development method-

ologies, and the research and develop-

ment program.  Mr. Seinfeld was the

CIO for Girard Bank.  Earlier in his

tenure he was the principal architect in

the design and implementation of a

large-scale highly integrated banking

system.  This system evolved into the

foundation of one of the first large ATM

networks.

ROGER SESSIONS
on distributed middle-tier 

technologies

Roger Sessions is the world's leading

expert on Microsoft's distributed

middle-tier technologies, including

COM, DCOM, and MTS.  Prior to start-

ing his company, ObjectWatch, Inc.,

Mr. Sessions worked at IBM, where he

was an architect of one of the CORBA

services.  He was also a lead architect

for IBM's implementation of the

CORBA Persistence Service, gaining an

unparalleled perspective on middle-

tier technologies.  Mr. Sessions has

written four books; his most recent is

COM and DCOM: Microsoft’s Vision

for Distributed Objects.  He writes the

highly respected and often controver-

sial online ObjectWatch Newsletter.  In

addition to frequent speaking engage-

ments worldwide, Mr. Sessions writes

articles for many industry publications.

ED YOURDON
on object-oriented design 

and analysis

Edward Yourdon is widely known as

the lead developer of the structured

analysis/design methods of the 1970s.

He was a codeveloper of the Yourdon/

Whitehead method of object-oriented

analysis/design and the popular Coad/

Yourdon OO methodology.  He is also

the editor of the Cutter IT Journal.

Mr. Yourdon is currently focused on

issues of business/IT alignment; miti-

gating risks of large outsourcing initia-

tives; auditing of large, risky projects;

and the development and implemen-

tation of e-business initiatives as well

as forecasting and tracking critical

business/IT “megatrends” in the com-

ing decade.  Mr. Yourdon is currently

a member of the Airlie Council, a

group of high-end advisors formulating

software “best practices” for the US

Department of Defense.  Mr. Yourdon

has authored more than 200 technical

articles; he has also written 25 com-

puter books since 1967.  

SENIOR CONSULTANTS


