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Complexity is all around us. It is
part of our life; it is the nature of
life. Complexity is caused by the
collective behavior of many basic
interacting agents. Such agents
can produce everyday phenom-
ena such as ant colonies, traffic
jams, stock markets, forest
ecosystemns, and supply chain
systems. Complex systems, how-
ever, do not have to complicated.
For example, the ant colony simu-
lation shown in Figure 1 (see
www.media.mit.edu/~starlogo)
is not complicated. Each ant has
three simple rules:

1. Wander randomly.

2. If food is found, take a piece
back to the colony and leave a
trail of pheromones that evap-
orates over time, then go back
to rule 1.

3. If a pheromone trail is found,
follow it to the food, then go to
rule 2.

In Figure 1 (a), the ants are just
emerging from the ant hill to
begin their random walk.
Eventually, an ant discovers a food
source and returns some to the
colony, leaving a trail of evapora-
tive pheromones as shown in
Figure 1 (b). Figure 1 (c) shows
the ant colony well under way in
retrieving food. Lastly, Figure 1
(d) depicts two very depleted
food sources and one that is
exhausted altogether.

Ant colonies, then, are not compli-
cated. A system is complicated if
it can be completely described in
terms of its huge number of com-
ponents. A system is complex if
the system cannot be fully under-
stood by analyzing its compo-
nents; here, the interaction among
the components also must be
considered.

Often, complex systems cannot
be fully understood, precisely

because we do not fully under-
stand the component (or agent)
interaction. For example, we
might be able to identify the
components involved in the New
York Stock Exchange, yet we can-
not accurately predict when we
will have a bull market or a bear
market, nor when a market bub-
ble will burst. In such situations,
our knowledge of the interaction
among the various components
is not well understood.

This Executive Report focuses on
complex systems and follows up
on the idea of agents, which was
first discussed in the Executive
Report “Agents: Technologies and
Usage (Part 1),” Vol. 3, No. 4.

COMPLEX SYSTEMS

The science of complex systems
was first made popular by the
Santa Fe Institute (SFI). This
group of complex systems
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Figure 1 — Snapshots from an ant colony simulation.

theorists and practitioners offers
the following definition:

Complexity refers to the
condition of the universe
which is integrated and yet
too rich and varied for us
to understand in simple
common ... ways. We

can understand many parts
of the universe in these

ways, but the larger more
intricately related phen-
omena can only be under-
stood by principles and
patterns — not in detail.

This concept is important to us
because the nature of business
and IT systems are becoming
more complex. For almost a
century, our manufacturing model

was reasonably stable. Rules for
productivity, market dominance,
and company success were well
understood. However, the infor-
mation age has turned previous
“knowns” on their head. Today,
no one can predict what or how
rapidly new technologies will be
developed. No one can accu-
rately predict how supply chains
will be affected or how customers
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will respond. A business plan is
only a guess.

Even small to medium-sized busi-
ness are not insulated from this
effect. Satellite communications,
the Internet, and air transports
commonly provide ways of rapidly
moving corporate resources from
place to place. All of us are now
connected through a global
market of online customers and
suppliers, supply chain partner-
ships, and international franchise
competition.

As Susan Kelly and Mary Allison
suggest in The Complexity
Advantage, businesses that don’t
understand and take advantage
of the nature of complex systems
thinking “will be at the mercy of
an increasing number of sudden
and unexpected shifts in the mar-
ketplace. As uncertainty grows
exponentially with today’s high
rate of technological change and
the fallout from it, so does the
pressure of global markets” [1].
Many executives try to respond to
this with yesterday’s mindset and
linear cause-and-effect thinking.
Often, these responses intensify
an already downward spiral.
Despite well-conceived plans and
well-intended actions, a company
that operates without complex
systemns thinking will find itself
unable to respond to the ever-
increasing complexity of the
business world.
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Primary Issues

Common to any discussion of
complex systems are several
fundamental ideas.

First and most basic among these
is agents. In complex systems,
these are the autonomous entities
that interact to carry out their par-
ticular tasks. Another fundamen-
tal concept is that these agents
are adaptive. That is, the agents
must be able to react to their envi-
ronment and possibly change
their behavior based on what is
learned.

Complex systems are also charac-
terized by emergence. Emergence
is a coherent pattern that arises
out of interactions among agents.
For example, the process of an
entire ant colony being fed was
not programmed. It emerged
from some very simple rules pro-
grammed into each ant. In other
words, emergence is a byproduct
of individuals — not a choreo-
graphed result. Emergent results
can be good as well as bad and
therefore must be considered
when developing agent-based
systems.

Successful emergent systems
often exist between order and
chaos. As with any organism or
organization, being orderly or
chaotic all the time would result
in death. However, the area in
between is necessary for contin-
ued existence and fitness.

Lastly, nature can teach us a lot
about designing complex systems.
It has been solving large combina-
torial problems for billions of
years. It makes sense, then, for us
to consider notions such as para-
sitism, symbiosis, reproduction,
genetics, mitosis, and survival of
the fittest when developing our
agent-based systems. For exam-
ple, British Telecom is using the
model of ants and pheromones in
its call-routing network. Here,
successful calls leave an equiva-
lent of pheromones to guide
future calls.

The ideas in the first item were
discussed in “Agents: Technology
and Usage (Part 1).” The remain-
ing items are presented below.
This overview will conclude with
a comparison and contrast
between agents and objects.

ADAPTATION

An adaptive agent is an agent that
responds to its environment.
There are four primary ways of
adapting:

m Reacting — a direct, predeter-
mined response to a particular
event or environmental signal.

m Reasoning — ability to make
inferences.

m Learning — change that
occurs during the lifetime
of an agent.

m Evolving — change that occurs
over successive generations of
agents.
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Reactive Agents

In its simplest form, an agent can
react with a direct, predetermined
response to a particular event or
environmental signal. Typically,
the behavior of reactive agents is
expressed in the form: WHEN
event, IF condition(s), THEN
action. Examples of such agents
are thermostats, robotic sensors,
and washing machines that use
fuzzy logic. Although these kinds
of agents may seem primitive,
they are capable of achieving sig-
nificant results. For example, the
ant colony simulation described
earlier consists of purely reactive
agents — yet a whole colony is
fed. The majority of the agents
in our IT systems will consist of
such agents.

Reasoning Agents

A reasoning agent can follow a
chain of rules. Although these
kinds of agents are often reactive,
they have the added capability of
making inferences. Reasoning
agents can perform tasks such as
network diagnosis or data mining.
Reasoning is not a new capability.
Expert systems have been around
for quite a while. The difference
here is that expert system rules
can be encapsulated within
agents. Furthermore, the agent
can be designed to be proactive
in its use of reasoning. For
example, an agent does not

have to wait for a report of a
supply chain problem to perform
diagnosis; it could perform pre-
ventive maintenance as well.
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Learning Agents

Some agents can their change
behavior based on their experi-
ences. In other words, these
agents can “learn.” Learning
agents don’t need to have large
brains, they just need the capacity
to modify their actions as a way to
improve their performance. This
can be accomplished by simply
programming them to weigh their
decisions. Another common
technique is to use neural net-
works, another device from the
Al era that can be applied within
agent-based systems.

Evolving Agents

In agent systems, changes can
occur over successive generations
of agents. For example, Darwinian-
style evolution is a common tech-
nique. Here, agents can be bred
using genetic algorithms, and then
compete in a survival-of-the-fittest
mode. In Lamarckian-style evolu-
tion, features acquired and infor-
mation learned by an agent can
be passed on to its offspring. The
use of memes, or culturally trans-
mitted information, is also a popu-
lar technique.

Adaptation Summary

The four primary forms of adap-
tive agents described above can
be used singly or in combination.
For example, a reactive agent’s
neural network could have been
bred using genetic algorithms,

or a proactive reasoning agent
could learn by placing weights
on certain decision points in its
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rules. At a minimum, however,
the agent must be able to react to
external stimulus.

Reactive and reasoning agents are
fairly easy to construct and under-
stand. Learning and evolving
agents take more work to design,
but the greatest drawback is that
it can be very difficult — even
impossible — to understand their
decisions. Once a neural network
has been trained to solve certain
kinds of problems, there is almost
no way to ask it how it came up
with its solution to a particular
problem. A similar problem exists
with genetic algorithms. Here

an agent’s program code can be
cross-bred with other agents’
code until it can successfully
accomplish a given task.
Eventually, it may perform its
tasks perfectly, but understanding
how and why it works can be
close to impossible, particularly
for agents with thousands of lines
of code that have been bred over
thousands of generations.

In short, we can “teach” and
“breed” agents now. The good
news it that such a process can
generate results faster and usually
better than any human. The pos-
sibly scary news is that the results
can occur without human inter-
vention. In other words, we will
be building agents that seem to
have a “life” of their own. They
can learn to buy, sell, bargain,
fabricate, and make decisions

for us — making us feel “out of
control” [2]. We delegate to
human agents all the time, but
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delegating to software agents can
take time to get used to, even
though it is inevitable.

AGENTS AND EMERGENCE

Agents can work as noninteractive
individuals or as a collective.
When agents work as individuals
with little or no interaction, what
you get is just that: agents simply
doing what they are asked to do.
For example, a single “bot” agent
sent out to find the cheapest air-
line fare can be expected to sim-
ply return with the requested
information. As a collective, how-
ever, something new and different
can result — something that is
more than the sum of the individ-
ual participants.

The stock market, immune sys-
tems, and ant colonies are all
examples of agents acting individ-
ually, yet from the interactions of
these agents a new phenomenon
arises. With the stock market,
thousands of agents act indepen-
dently to buy and sell shares of
particular stocks and bonds.
From this independent behavior,
an organism-like product called
the stock market emerges. In
other words, the rise and fall of
the market is not controlled by a
central process; it results from
agents interacting. The stock
market crash of 1929 was a result
of individual human agents — not
a central controller. The crash of
October 1987 partly resulted from
individual software agents that
buy and sell securities according
to programmed rules. The stock
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market, with its crashes, tempo-
rary bubbles, and dead-cat
bounces, is more than the sum
of the parts; it is an entity in its
own right. Such entities are
called emergent structures.

Ant colonies are emergent struc-
tures that arise from individual
ants acting interactively. The
immune system emerges from the
collective behavior of agents such
as antigens, T-cells, B-cells, NK-
cells, immunoglobulins, lymph
nodes, and the spleen. Other
examples of emergent structures
include families, organizations,
societies, markets, flocks of birds,
and traffic jams. In IT systems,
this can include supply chain,
scheduling, trading-floor, and
e-commerce systems.

Emergence

Emergence is the existence of a
coherent pattern that arises out of

interactions among agents. The
diagram in Figure 2 illustrates this
definition. Emergence embodies
several properties:

m [n emergent structures, agents
organize into a whole that is
greater than the sum of its
parts. In other words, the parts
alone do not result in emergent
structures — their interaction is
required. Single bot agents will
not result in emergence; a
multiagent environment, such
as shop-floor operations sys-
tems, handled by multiple
interacting agents can have
emergent properties.

m Rules that are almost absurdly
simple can generate coherent,
emergent phenomena. For
example, each ant in the ant
colony described earlier has
some very simple rules, yet a
well-fed colony can emerge
from these simple rules.

-
!

Figure 2 — Local interaction can give rise to global dynamics,
creating a coherent structure.
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Likewise, a purchaser or sup-
plier agent can have simple
rules resulting in an emergent
inventory system.

m Instead of being designed
from the top down, most emer-
gent systems develop from the
bottom up. A human engineer
would tend to develop top-
down. This approach can
be useful under some circum-
stances. However, most living
systems emerge from a pop-
ulation of simpler systems.
Developing daily operational
plans in a top-down manner
work well for fairly predictable
organizations. In less predict-
able environments, top-down
plans can easily become obso-
lete in a manner of minutes.
There, a bottom-up, agent-
based approach could result
in a very effective, emergent
operation.

m Persistent emergent structures
can serve as components of
more complex emergent struc-
tures. In other words, hierar-
chies of emergent structures
can be formed. This is how
nature obtains scalability; any
IT organization could employ
the same mechanism.

m Agents and their emergent
structure can form a two-way
link. Agents can give rise to an
emergent structure; the emer-
gent structure can influence
its component agents. For
example, the stock market is
an emergent structure of indi-
vidual buyers and sellers, yet
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the rise and fall of such mar-
kets can affect the buying and
selling habits of individual
participants.

m Emergent phenomena are
typically persistent patterns
with changing components.
The birds in a flock or the cars
in a traffic jam can change, yet
the flock and traffic jam phe-
nomena remain. Likewise,
the buyers and suppliers in
a company’s supply chain
change frequently, and the par-
ticipants in a scheduling sys-
tem can differ on a daily basis.

m Collections of agents can be
homogeneous or heteroge-
neous. Emergence can occur
due to the interaction of similar
agents. More often, though, it
occurs as a result of different
kinds of agents that function in
a society or ecosystem. Large
organizations employ hetero-
geneity by specializing corpo-
rate resources using different
roles and business units.

These properties will be explored
in more detail in the sections that
follow.

Greater than the Sum of Its Parts

Simple-minded reductionism
states that the whole is simply
the sum of its parts and that each
part can be studied in isolation.
However, the parts alone cannot
produce emergence. Emergent
structures also require the col-
lective behavior and interaction
of its components. Emergent
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structures, then, are a process —
and the essence of the process is
its form, not its parts. Families,
organizations, societies, financial
markets, schools of fish, and traf-
fic jams are all examples of this
phenomenon. A hoard of non-
interacting Web spiders will not
produce an emergent structure.
However, when an ecosystem of
supply chain software agents can
buy and sell goods and services
over the Web, a “supply web”
can emerge [3]. The supply web
behaves like a financial market —
which does give rise to an emer-
gent structure. Agent-based
modeling and bidding systems
make this possible.

Simple Agent Rules Can Produce
Emergent Structures

A common example of simple
rules leading to emergence is a
flock of birds. Each movement

of a flock is so beautiful that it
appears choreographed. Further-
more, the movements of the flock
seem smoother than those of any
one bird in the flock. Yet, the
flock has no high-level controller
or even a lead bird. Each bird fol-
lows a simple set of rules that it
uses to react to birds nearby. In
StarLogo’s flocking simulation, the
birds obey only three rules:

1. If you are far away from
other birds, head toward
the nearest bird.

If you are about to crash into
another bird, turn around.

3. Otherwise, fly in the same
direction as the bird next
to you.
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Using these three simple rules,
no one bird has a sense of an
overall flock. The “bird in front”
is merely a position of a given
bird. It just happens to be there
— and wiill be replaced by others
in a matter of minutes. Flocks of
birds are not the only things that
work like this. Beehives, ant
colonies, freeway traffic, the
Web, and the phenomenon of
Silicon Valley are all examples of
patterns that are determined by
local component interaction,
instead of a centralized authority.
Complex behavior need not have
complex roots.

Top-Down Versus Bottom-Up
Approaches

If you have ever heard classical
music or watched a ballet, you
have no doubt realized that the
performance was orchestrated or
choreographed. The centralized,
or top-down, development of
these kinds of performances is
both obvious and necessary.
Many of the products we use in
everyday life require top-down
engineering to be effective.
However, most of the emergent
phenomena we experience do
not occur as a result of top-down
efforts; instead, they are the result
of decentralized, or bottom-up,
processes. For example, the
flock of birds mentioned above
emerges without an organizer
and behaves without a coordin-
ator. So, too, does the applause
that follows a classical concert
or ballet.
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Today, many resource providers
and manufacturers are exploring
the possibilities of employing a
decentralized approach. Many of
these organizations are already
adopting solutions that will
replace their central, globally opti-
mized operations with a distrib-
uted, self-organizing, local one.
John Holland, a professor at the
University of Michigan, is fond of
pointing out that New York City
maintains a two-week supply of
food with only locally made deci-
sions. Companies such as
Boeing, John Deere & Company,
and Detroit Edison are beginning
to do this.

Both centralized and decentral-
ized approaches are useful tech-
niques. Using one technique and
not the other limits the possibili-
ties of a system. Often, our
human bias toward centralization
precludes the consideration of
decentralized solutions. For
example, three-year-old Rachel
developed the theory that clouds
rain when the thunder commands
them [4]. At four, she developed
a new theory: the clouds get
together at night and decide
whether or not it should rain

the next day. People resist de-
centralization. When people

see a pattern, they often assume a
centralized control. This does not
mean that centralized theories are
wrong, it is just that they are not
always appropriate:

m A central agent is a single point
of failure that makes the sys-
tem vulnerable to accident.

m Under normal operating con-
ditions, a central agent can
easily become a performance
bottleneck.

m Even if it is adequately scaled
for current operations, a central
agent provides a boundary
beyond which the system
cannot be expanded.

m A central software agent tends
to attract functionality and
code as the system develops,
pulling the design away from
the benefits of agents and, in
time, becoming a large soft-
ware artifact that is difficult to
understand and maintain.

Emergent Structures Can
Themselves Be Components

One of the most difficult chal-
lenges for automated systems is
scalability. Living systems provide
some excellent examples of scal-
ing up. In the physical systems
leading up to life, for example,
subatomic particles form atoms,
and atoms cluster to become
molecules in solid, liquid, and
gaseous form. Continuing up

this hierarchy, molecules can

be organized to form organelles,
organelles can group to form
cells, cells can aggregate to form
organisms, and so on. In other
words, living systems and their
components emerge in a hierar-
chy of interlocking mechanisms.
In the domain of human organiza-
tion, similar hierarchies occur, as
illustrated in Figure 3. Here,
economies emerge from markets,
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which emerge from enterprises,
and so on [5].

Emergence provides the mortar
between the bricks to construct
viable structures. Furthermore,
the new structures can become
building blocks for even larger
structures — in which each level
of the hierarchy is very different
from the one before and the one
after it. Such a hierarchy of inter-
locking mechanisms is also an
appropriate technique for auto-
mated agents.

Agents and Their Emergent
Structure Can Form a
Two-Way Link

Applause occurs when spectators
join in what appears to be sponta-
neous synchronized clapping.
There is no conductor that coordi-
nates this. When everyone starts,
the clapping is totally unorga-
nized; each person’s tempo is
wildly out of phase with the next
person. Eventually, groups of
people begin clapping at the

4 Economy )
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Market
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Team
Individual
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same tempo. People in the audi-
ence sense the emerging rhythms

and adjust their clapping to join it.

The emerging applause rhythm
grows even stronger and more
people conform to it. Eventually,
the entire audience is clapping in
a synchronized pattern. This
entire process can take place in
a matter of seconds with even
thousands of individuals.

We have been exploring how

the local interaction and behavior
of agents can produce global
dynamics of emergent structures.
In the example of spectator
applause, the interaction of
humans in the audience pro-
duced the dynamics of applause.
However, there was another
phenomenon occurring in this
example: individually, the specta-
tors adjusted their applause
rhythm based on the applause
that they heard. In other words,
local interaction can give rise to
global dynamics, and the global
dynamics, in turn, can influence
the local interaction.

4 Ecosystem )
s ) N
Habitat
Organism
Cell
Organelle
NN J

Figure 3 — Parallels between business and biology.

VOL. 3, NO. 6

DISTRIBUTED COMPUTING ARCHITECTURE/E-BUSINESS ADVISORY SERVICE

Such an effect is also evident

in business systems. The stock
market both results from and
affects the buyers and sellers

of securities. The auto parts mar-
ket setup as a joint venture of
General Motors (GM), Ford, and
DaimlerChrysler, will result from
and affect the buyers and sellers
of automotive parts. As illustrated
in Figure 4, emergent structures
can be linked to their local agent
interaction with the following
results:

m This link influences the bound-
ary conditions of the local
agents.

m Local agents can then adjust
to the presence of the global
dynamics.

m Consequently, the conditions
under which the agent behaves
might change.

Emergent Structures Can Have
Components that Change

As stated earlier, the birds in a
flock or the cars in a traffic jam
can change, yet the flock and traf-
fic jamm phenomena remain. The
same applies to the stock market
and supply chain webs. Just
because an emergent structure
exists and is stable does not mean
that its components cannot
change over time. Each of us
replaces all the atoms in our body
every three years, yet we are still
considered to be the same being.
Many Silicon Valley companies
have more turnover than this,
while still being recognized as the
same organization. Change in the
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underlying agent population is not
required for emergence, but it is a
common phenomenon.

Homogeneous and Heterogeneous
Collections of Agents

Some emergent structures consist
of a single kind of agent; for
example, a flock of birds consists
only of birds. Here, each agent
plays the same role. Homogen-
eous agent collections can still
have a single kind of agent, yet its
agents can play different roles.
For instance, an ant colony can
have ants that play different roles.
An ant can be a patrolling ant

that guards the nest, a nest-
maintenance worker, a forager, a
brood-care worker, and so on.
Furthermore, an ant can change
its role depending on the require-
ments of the colony. For instance,
a nest-maintenance worker can
become a forager or a patrolling
ant when the need for food or

security becomes more important.

Heterogeneous collections of
agents also play different roles
because they contain different
kinds of agents. The major differ-
ence is that in a heterogeneous
collection, agents are different

in both structure and behavior.
For example, the immune system
emerges from the collective
behavior of various kinds of
agents, such as antigens, T-cells,
B-cells, NK-cells, immunoglobu-
lins, lymph nodes, and the spleen.
T-cells and B-cells not only play
different roles, but their structure
and behavior is also different
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enough to be considered
heterogeneous.

When we construct complex
business systems, we need to
think of agents as functioning as

a society or ecosystem. In design-
ing such systems, we need to
consider how we can effectively
employ homogeneous and het-
erogeneous agents.

Emergence Conclusion

When constructing agent systems,
emergence is an important con-
cept to consider. On the one
hand, emergence is something
that can happen to you without
your consent or predictive ability.
This can be good or bad. On the
other hand, as a system devel-
oper, you can try to “design in”
the emergence that you want. In
other words, you can try to design
the agents in such a way that the
desired structure emerges. In
summary:

m You control the action of the
parts, not the whole.

m You act as a designer, but
the resulting pattern is not
designed.

m Self-organizing patterns are cre-
ated without a central designer.

m You must have enough agents
acting in parallel to get a “criti-
cal mass.” A colony of 10 ants
will not suffice.

m The parts must be interacting
— parallelism is not enough.
Without interactions, interest-
ing colony-level behaviors will
never arise.

m Remember: a flock is not one
big bird, and a traffic jam is not
just a collection of cars.

BETWEEN ORDER AND CHAOS

Nature has moments both of
order and chaos. Interestingly
enough, those forms of nature

Figure 4 — Local interaction and global dynamics can influence each other.

VOL. 3, NO. 6



that are considered most fit actu-
ally reside someplace in between.
In fact, many consider this in-
between state a necessary prop-
erty of emergence for nature.
Such a phenomenon also applies
to business and software agents.

Basic Agent Behavior

Before we discuss order versus
chaos, this section gives some
brief technical background. One
of the earliest forms of agents is
called a cellular automata (CA).
The idea was originally conceived
by the Polish mathematician
Stanislaw Ulam in the early 1950s,
and further developed by John
von Neumann and Arthur Brooks.
Basically, a CA consists of a lattice
of cells, or sites. Each cell has a
state whose value is commonly
expressed as 0 or 1, black or
white, on or off, or a color
selected from a set of colors. At
discrete “ticks” of the CA clock,
this value is updated according to
a set of rules that specifies how
the state of each cell is computed
from its present value and the
values of its neighbors.

The most familiar example is
John Conway’s game, Life. As
described in the October 1970
issue of Scientific American, only
a checkerboard and an ample
supply of markers are needed.
The rules of Life are simple:

m A dead cell (state 0), with
exactly three of its eight imme-
diate neighbors alive (state 1),
is born. Under the right condi-
tions, the cell comes alive.
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m A living cell with two or three
living neighbors remains alive;
that is, the cell stays alive when
nurtured by its neighbors to the
right extent.

m All other cells die (or remain
dead) due to overcrowding or
loneliness.

m FEach cell is updated once per
time period.

The checkerboard rules represent
the laws of physics (or life), and,
although the cells themselves are
not mobile, an amazing amount
of behavior emerges. Figure 5 (a)
depicts how a CA society can die
out over three generations. Figure
5 (b) shows how a society can
form a fixed configuration. Lastly,
Figure 5 (c) illustrates how some
patterns oscillate indefinitely.
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Classifying Agent Behavior

Over the long run, CA societies
have similar kinds of emergent
behavior. The patterns shown in
Figure 6 illustrate the four classes
of behavior identified by Stephen
Wolfram in 1983 when he was at
Princeton’s Institute for Advanced
Studies. Class I societies are
those that exhibit a static, or limit
point, behavior. Figures 5 (a) and
5 (b) are examples of this class,
because the lattice will not
change after generation 3. Class
Il societies exhibit periodic, or
limit cycle, behavior, which is the
indefinite oscillation depicted in
Figure 5 (c).

Class I and Il can be considered
one extreme of CA behavior
because everything is predictable
and orderly. Class III, on the other

Generation 1

Generation 2

Generation 3

.0
(a) L [ J death
[
() ) L ) ] 00
— stable
0| @ 0 L [ J block
D o N,
indefinite
(c) [ ] 900 o oscillation
o o

Figure 5 — Some examples of Life patterns.
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hand, is aperiodic, or chaotic;

that is, its structures display no
obvious order or uniformity. In
between these extremes is a
mysterious and complex class

of behavior: Class IV. Such
automata exhibit considerable
local organization, yet also have
areas of irregular behavior. In
other words, Class IV automata
are someplace in between the
two extremes: they exhibit orderly
behavior as well as some chaotic
behavior [6]. (Images in Figure 6
are courtesy of Andrew Wuensche,
generated using his software
“Discrete Dynamic Lab” from
www.santafe.edu/~wuensch/
ddlab.html.)

Order Versus Chaos

Cellular automata offer a way

to model natural and artificial
processes, such as modeling
crystallization, complex fluid
flows, chemical reactions, and
hardware architecture, yet CA
involves an elementary form of
agent. Imagine the kinds of sys-
terns that can be built with agents
that are mobile and have sophisti-
cated forms of communication
and interaction. Such agent sys-
tems provide not only a richer
way of modeling natural and artifi-
cial processes but also a way of
implementing such systems.

Such mature agents systems are
subject to the same Wolfram
behavior. You can build agent sys-
tems that are orderly (Class I and
II), and such orderly behavior is
appropriate for some kinds of
systemns. However, when agents
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i patterns grow
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Figure 6 — Wolfram’s four classes of long-run behavior.

are expected to learn and change
their behavior, an orderly system
discourages change. In a busi-
ness example, all the jobs in an
organization would be subdivided
so that employees have no lati-
tude and only do the job for
which they are hired. For an auto-
mated supply chain system, the
results would always be pre-
dictable. On the surface, such
predictability would seem to be a
good thing. However, when the
business landscape changes (as

it often does), the supply chain
operation would no longer suit
the organization’s needs. Instead,
it would be predictably wrong.

In both of these scenarios, every-
one would benefit if the individual
agents had the freedom to
change. In short, orderly agent
systems should become more
fluid — and a bit closer to chaos.

Conversely, if agents are deep in
a chaotic regime (Class III), they
can never get the job done. For
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example, employees who do not
know what they’re supposed to
do often end up working at cross
purposes. A supply chain system
would not be able to deliver the
right product to the right person at
the right time. In both of these
scenarios, if the individual agents
could have tighter connections
with fewer individuals, a greater
degree of stability would be intro-
duced. Chaotic agents, then,
should become less fluid by
adapting to what other agents are
doing, resulting in aggregate
behavior. This means pulling
back from chaos.

The Edge of Chaos

Neither order nor chaos seems to
be the best place for complex sys-
tems — whether their agents are
implemented using software,
hardware, machines, or people.
Instead, such agent systems need
to be somewhere in between.
With too much order, the system
stagnates and dies in the face of
new competition that needs to be
only a little bit better. With too

Periodic

much chaos, the system will not
survive because it cannot make
useful products. The edge of
chaos is, on average, where fit-
ness is best (see Figure 7). Such
systems can exploit what they
have learned and extend that
learning through exploration.

Complex systems (including both
living and business systems) are
characterized by perpetual nov-
elty. This approach can be scary:
things can get out of control,

and errors will be made. Yet
without this kind of approach,
there will be no change — only
status quo. To talk about complex
adaptive systems being in equilib-
rium is meaningless because the
system never gets there. It is
always unfolding, always in transi-
tion. If a system ever reaches
equilibrium, it is not just stable —
it is dead.

Now, [ am not suggesting that
such complex systems be built
immediately. In fact, this would
probably result in chaos itself.
Complex systems should be built

Figure 7 — Complex systems poised between order and chaos are best able to
carry out ordered yet flexible behaviors.
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simply at first, initially placing any
edge-of-chaos processing with
human agents rather than auto-
mated agents.

The reasons for this are technical
and psychological. Technically,
we do not yet fully understand
how to build complex systems
that function properly. We lack
both a systematic methodology
and industrial-strength agent-
system toolkits. Psychologically,
living on the edge of chaos can
make us uncomfortable. And
when we must delegate our tasks
to automated agents, we will feel
even more out of control. It’s bad
enough when people are intimi-
dated by their home appliances.
What will happen when auto-
mated agents choose the articles
we read, automatically answer
our mail, and schedule appoint-
ments? On top of this, imagine
how uneasy we will feel when
automated agents begin making
critical business decisions and
acting on them. Confidence and
understanding come slowly.

Edge of Chaos Conclusion

Stability is something valued in
accounting and payroll systems.
Nevertheless, the next generation
business systems should be oper-
ating on the edge of chaos. Order
enfry, inventory control, and
supply chain systems are particu-
larly appropriate. These are sys-
tems whose agents are people,
machines, and software. To
work effectively, these agents
must work together as a living
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system — requiring flux, change,
and the forming and dissolving of
patterns.

Complex systems theory points
us away from isolated units and
toward interactions between indi-
viduals and their environment.
Strategy focuses on the manage-
ment of volatility, not the achieve-
ment of specific goals. Growth
comes from agent relationships
and rules, rather than through a
significant increase in size.
Opposing thoughts or points of
view are held simultaneously.
Mild instability is encouraged.
Build something workable, rather
than “optimal.” Developing com-
plex systems is not for the faint-
hearted, which applies to both
executives and IT system devel-
opers. We need to unleash our
software and let it grow and learn
like any living system. Only then
can our systems mature beyond
our limitations — and exceed our
expectations.

As Petruska Clarkson, a psycholo-
gist and chartered UK consultant
put it, “A greater kind of courage
and a different psychology is now
required — to be willing to let go
and experience the creativity,
innovation, and disturbance
which comes about when we risk
the outer boundaries of trying to
maintain a balance and the
excitement of living, developing,
and coaching at the edge of
chaos.” Learning will perhaps
ultimately prove less valuable in
the third millennium than the skill
and attitudes of unlearning — in
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the same way that knowing what
to do may become far less impor-
tant than knowing what to do
when you no longer know what
to do.

DESIGNING AGENTS: USING
LIFE AS AN ANALOGY

Analogies enable us to use one
concept in place of another to
suggest a likeness. They are
particularly useful for introducing
new ideas to an existing area,
thereby expanding and enriching
it. Using life as an analogy is
already quite common when dis-
cussing agents, because agents
can appear to interact in a lifelike
manner. As such, we can think
of agents as being subjected to
stress from environmental pres-
sures, resource shortages, and
restriction of growth. We can
imagine them with the ability to
evolve their behavior by develop-
ing ways of coping with such
stresses. Some agents will survive
and succeed by growing, increas-
ing their ability to command
resources, and reproducing.
Those that fail will shrink and will
either be replaced, be absorbed,
or die [7].

In short, we can use life as an
analogy to develop agent-based
systems, whether the agents are
software, hardware, equipment,
corporate entities — or even
people.

Agents and Scalability

One of the most difficult chal-
lenges for automated systems is
scalability. Here, life as an anal-
ogy brings with it many useful
concepts, including some excel-
lent examples on how to scale up.
As we said earlier, in the physical
systems leading up to life, for
example, subatomic particles
form atoms, and atoms cluster to
become molecules in solid, liquid,
and gaseous form. Continuing up
this hierarchy, molecules can be
organized to form organelles and
cells, cells can aggregate to form
organisms, and so on (see Table
1) [8]. In other words, living
systems and their components
emerge in a hierarchy of inter-
locking mechanisms.

In a general sense, complex
systems are large and intricate
systems involving active, auton-
omous agents. Such a hierarchy

Table 1 — A Hierarchy of Interlocking Mechanisms

System (Science)

Typical Mechanisms

Nucleus (physics)

Quarks, gluons

Atom (physics)

Protons, neutrons, electrons

Molecule (chemistry)

Bonds, active sites, mass action

Organelle (microbiology)

Enzymes, membranes, transport

Cell (biology)

Mitosis, meiosis, genetic operators

Multicellular organism (biology)

Morphogenesis, reproduction

Social group (biology)

Individuals, social relationships

Ecosystem (ecology)

Symbiosis, predation, mimicry
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is a necessary — and some say, a
natural — occurrence for com-
plex systems. Without such a
hierarchy, scalability would not
be possible. Life would not be
possible. Without a more com-
plex formation, 10°° subatomic
particles floating around our
universe would just be 10° sub-
atomic particles floating around.
Individually, they are subatomic
particles and no more. To create
something more complex, there
must be a way to produce a new

Option 1:
1 Agent,
Single Boundary

Option 2:
2 Agents,
Single Boundary

00

structure that is more than just the
sum of its particles.

However, these new aggregate
formations cannot become too
large. Such structures can easily
become unstable and collapse
under their own weight; for
example, increasing the size of
a molecule a trillion times to
produce something substantive
is as impractical as building sand
castles a mile high.

Option 3:
Layered
Boundaries

Option 4:
Complex
Aggregate

L (0

MTHT@ ()

Figure 8 — Some forms of agent aggregation.
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Sheer numbers without organi-
zation are unmanageable, and
bigger is not necessarily better. It
is life’s hierarchy of interlocking
mechanisms that provides the
right mortar between the bricks

to construct viable structures.
Furthermore, the new structures
can become building blocks for
even larger structures in which
each level of the hierarchy is very
different than the one before and
the one after it. For example,
hydrogen and oxygen have very
different properties than a water
molecule which comprises them.
A cell has a different structure and
behavior than the molecules and
organelles that comprise it, and so
on. Why can’t the same approach
work for automated agents?

Aggregate Agents

Agents can be aggregated to form
variable structures. These aggre-
gates can be colonial in nature
(such as sponges and coral reefs)
or metazoan (that is, multicellular
animals). Agents that adhere to
one another can behave in a uni-
fied manner and still maintain
their autonomy. Automated
agents might choose to aggregate
for various reasons, such as pro-
tection, resources, or improve-
ment. In other words, the agents
might decide that they are better
off together than apart. Further-
more, the agents may adapt to
serve the aggregation as a whole.

Figure 8 depicts several aggrega-

tion options [9]. The first option,
of course, is that there is no
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aggregation. The second option
is that two or more agents can
aggregate as a single unit. The
containment boundary indicates
that the entire construct can be
treated as an agent in its own
right. In option 1, the agent and
the boundary are the same. In
option 2, the boundary can be
treated as an agent separate from
the two agents it contains. The
term boundary is chosen because
it also provides an interface bar-
rier much like that of a cell mem-
brane. Agents on the membrane
(as in option 2) are still accessible
from the outside as individuals
while benefiting from the proxim-
ity to chosen neighbors. In con-
trast, agents that are contained
completely within the boundary,
as illustrated in option 3, are
encapsulated. Only those agents
on or immediately within a
boundary may communicate with
encapsulated agents. However,
the boundary itself may have
specialized rules that permit the
passage of agents through the
boundary — either into or out of
the agent. In fact, the membrane
could be constructed to allow
implicitly the passage of “sub-
strate” that it does not see or
care about. Granted this “breaks”
encapsulation, but that’s life. In a
complex aggregate configuration
(option 4), the nesting continues.

As we saw in Table 1, this

is a common phenomenon:
molecules emerge as aggrega-
tions of atoms, cells emerge as
aggregates of molecules and
organelles, and so on. For the
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world in general, it is common to
see building blocks at one level
combining to form building blocks
at a higher level. At each level,
new structures form and engage
in new emergent behaviors.

In object orientation, this is con-
sistent with how components are
handled. Each component has its
own interface. Those classes and
components contained by the
component are encapsulated; that
is, they are not directly accessible
by the external classes and com-
ponents. Although there is no
equivalent object-oriented (0OO)
support for option 2, it just means
that the component interface
includes the interfaces of those
classes on the component bound-
ary. In business, autonomous
agents can be grouped into
aggregates. At the Industrial
Technology Institute, for example,
Van Parunak (www.erim.org/
~vparunak) suggests that sensor
and actuator agents can be
grouped into a machine, several
machine agents can form a work-
station, and workstations can
aggregate into a manufacturing
cell. (The automotive company
case study in “Agents: Technology
and Usage (Part 1)” treated manu-
facturing cells in the same man-
ner.) In other words, grow by
chunking instead of starting with
large, complex agents. Favor
smaller, specialized agents over
more general ones. Small individ-
ual agents are easier to construct
and understand than monolithic
ones, and, if they fail, their impact
will be minimal.

AGENTS AND DISTRIBUTED
CONTROL

Distributed control is also a funda-
mental mechanism of life-forms.
It provides an alternative to having
a single elaborate control center
directing every single task, by
having multiple structures that
specialize in their own subtasks.
Furthermore, each of these struc-
tures may consist of many sub-
structures, offering a finer degree
of specialized control.

Distributed control of any com-
plex system has many advantages.
This is especially true when
systemn components are widely
dispersed, as in a communication,
transportation, or banking net-
work. Completely centralized
systems require two-way com-
munications links with all com-
ponents. In any situation subject
to rapid change, a completely
centralized control requires high
bandwidth communication links,
a powerful central computer, and
an elaborate operations control
center. However, all of these are
subject to disruption at any time
by systemn bugs, natural disasters,
espionage, or stress-related
events. In situations where fast
response and rapid recovery are
important, distribution of control
is usually preferable. Here, as
much control as is practical is
delegated to the local level. This
way, when a failure occurs, each
component can act as an inde-
pendent agent. If these agents
have adaptive capabilities, they
can organize themselves and
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make efficient use of whatever
resources remain.

An even richer model involves
autonomous adaptive agents

that partly cooperate and partly
compete with each other in their
local operations. Industries that
have multiple ownership and
management often operate with
a minimum of regulation — while
depending on the goodwill and
cooperation of all parties.

Dr. Martin Wildberger of EPRI

in Palo Alto, California, USA,
(mwildber@epri.com) has
demonstrated the feasibility of
these kinds of agents in computer
simulations of a deregulated
power industry.

Agent Sensors and Effectors

Life-forms can sense their envi-
ronment via an assortment of
stimuli, and they can also effect
changes in their environment.
Agents, too, can have sensor and
effector mechanisms. There are
several ways agents can “sense.”

Events

Events are changes in the environ-
ment that might be noteworthy
to an agent. They can be sent
directly to the agent on a broad-
cast or subscription basis or be
directly observable by the agent
in its network interaction. A
broadcast event can be sent to
one or more agents without the
receiving agent’s request. In
contrast, an agent may define the
kinds of events it wishes to know
about by notifying its external
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world via a subscription. Instead
of being reactive to its environ-
ment, an agent can be proactive.
A proactive agent can selectively
scan its environment for specific
kinds of events whenever it
wishes. Some agents employ
both approaches.

Direct Communication

Life-forms need to “communi-
cate” with their world to deter-
mine if other nearby entities are
edible or are potential partners for
procreation, protection, or sym-
biosis. For an automated agent,
this might mean locating parts to
ship (Order), finding the best pos-
sible price on a contract for elec-
tricity (Energy Purchase Contract),
or Web spiders finding the right
kind of requested information.
Communication between specific
agents may be direct or indirect.
Direct communication can be
one-way or two-way. An agent
can request information from
another agent, or it can provide
information to that agent with

or without any expectation of
acknowledgment or response.

Indirect Communication

Life-forms can gain a good deal
of information about their world
without directly communicating
with another agent. For example,
ants leave a pheromone trail that
guides other ants to find food.
British Telecom uses a similar
technique to optimize call routing.
Previously completed calls leave
“trail markers” that indicate paths
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for successfully reaching certain
calling destinations. Sensing,
then, can play a major role, as it
does for life-forms — and such
senses are not limited to the five
human ones. A good example is
the recent discovery of a kind of
auditory “sight” via sonar. Here,
dolphins not only do echolocation
(ping-reflect) and passive listen-
ing, they probably use a form of
signal processing akin to triangu-
lation in vision. In doing so, they
can process the reflection of
ambient noise in the surrounding
waters. This is not really broad-
cast (where the agent emits a
signal) and it is not really sub-
scription (where the observer
probes the object). It is more
like continually updating their
knowledge of the immediate
environment. The way in which
an agent senses the world (like
the difference between ambient
response and broadcast) can
make a substantial difference in
the way an agent behaves.

Finite Communication

Organisms cannot know every-
thing about their vast world, but
they can scan their neighborhood
for friend or foe. Similarly, it is
probably not feasible (or useful)
for an electric company to know
about all possible sources of elec-
tricity. Instead, its “order” agents
would primarily be interested in
energy sources within the com-
pany’s neighborhood. Each
agent, then, must have the ability
to “sense” particular kinds of
agents within a given range. For
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an autonomous agent to sense
things in its environment, it is
often useful to treat the environ-
ment as an agent in its own right.
An agent can then communicate
directly with the environment to
learn more about its state.

Lessons from AARIA

Using living systems as an analogy
suggests many mechanisms for
designing systems of autonomous
agents. We've discussed just a
few of those mechanisms already
being applied in complex systems.
Other notions include getting and
giving resources, transforming
resources, interaction, rejection,
pursuit, enablement, protection,
adhesion, reproduction, evolution,
and even death.

From the Autonomous Agents at
Rock Island Arsenal (AARIA) Web
site (www.aaria.uc.edu) come
some compelling reasons to use
agents to develop software:

m Agents are consistent with the
OO paradigm. The efficiencies
of programming with agents
begins with the efficiencies of
the OO paradigm.

m A multiagent hierarchy
matches the vision many
have for the future of Internet
computing. The idea of intelli-
gent entities communicating
and coordinating with each
other over wide area networks
is a common concept in the
Internet community.

m Multiagent systems can be
designed to be self-configuring.
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Agents can be added and sub-
tracted from the system while
it is running, with no external
intervention required.

m Self-configuration and de-
centralization provide fault
tolerance. A system of auton-
omously functioning compo-
nents will not collapse when
one or more of the compo-
nents fail or malfunction.

m Multiagent architectures are
inherently scalable and modu-
lar. From a hardware perspec-
tive, it is substantially less
expensive to use a large num-
ber of inexpensive processors
than a single processor having
equivalent total processing
capabilities.

OBJECTS AND AGENTS:
HOW DO THEY DIFFER?

Just how different are objects
and agents? Some developers
consider agents to be objects,
with more bells and whistles.

This approach tends to define
agents beginning with the phrase,
“An agent is an object that ...,”

in which the definers add their
favorite discriminating features.
Then, there are those who see
agents and objects as different,
even though they share many
things in common. Both
approaches envision using both
objects and agents in the develop-
ment of software systems. This
section discusses the differences
and similarities between agents
and objects and lets you decide
which viewpoint you want to
choose.

Evolution of Programming
Approaches

Figure 9 illustrates one way

of thinking about the evolution
of programming languages.
Originally, the basic unit of soft-
ware was the complete program,
over which the programmer had
full control. The program’s state
was the responsibility of the

Monolithic Modular Object-Oriented Agent
Programming  Programming  Programming Programming
Unit
Behavior Nonmodular Modular Modular Modular
Unit
State External External Internal Internal
Unit Ext | External External Internal
Invocation xterna (called) (message) | (rules, goals)

Figure 9 — Evolution of programming approaches [10].
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programmer, and its invocation
was determined by the system
operator. The term modular did
not apply because the behavior
could not be invoked as a
reusable unit in a variety of
circumstances.

As programs became more com-
plex and memory space became
larger, programmers needed to
introduce some degree of organi-
zation to their code. The modular
programming approach employed
smaller units of code that could
be reused under a variety of sit-
uations. Here, structured loops
and subroutines were designed
to have a high degree of local
integrity. Although each sub-
routine’s code was encapsulated,
its state was determined by exter-
nally supplied arguments, and it
gained control only when invoked
externally by a call statement.
This was the era of procedures as

the primary unit of decomposition.

OO0 added to the modular
approach by maintaining its seg-
ments of code (or methods) as
well as by gaining local control
over the variables manipulated
by its methods. However in
traditional OO, objects are con-
sidered passive because their
methods are invoked only when
some external entity sends them
a message.

Software agents have their own
thread of control, localizing not
only code and state but also their
invocation. Such agents can also
have individual rules and goals,
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making them appear like “active
objects with initiative.” In other
words, when and how an agent
acts is determined by the agent.

Agents are commonly regarded
as autonomous entities, because
they can watch out for their own
set of internal responsibilities.
Furthermore, agents are inter-
active entities that are capable

of using rich forms of messages.
These messages can support
method invocation, inform agents
of particular events, ask some-
thing of the agent, and receive a
response to an earlier query.
Lastly, because agents are
autonomous, they can initiate
interaction and respond to a
message in any way they choose.
In other words, agents can be
thought of as objects that can say
“no” as well as “go.” Due to the
interactive and autonomous
nature of agents, little or no inte-
gration is required to physically
launch an application. Van
Parunak summarizes it well:

“In the ultimate agent vision,

the application developer simply
identifies the agents desired in
the final application, and they
organize themselves to perform
the required functionality” [10].
No centralized thread or top-
down organization is necessary,
since agent systems can organize
themselves.

Object/Agent Boundaries

Before proceeding, it should

be noted that OO technology can
be extended in various ways to
support many of the properties
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ascribed to agents. In fact, much
of the current work on the Unified
Modeling Language (UML) in-
cludes many of these notions. For
example, the UML <<thread>>
and <<process>> stereotypes
can be considered active objects.
The point here is that the agent-
based approach is an extension to
how we think in an OO world —
just as OO was an extension to
the modular programming world.
Yes, objects could be used to sup-
port the agent-based approach,
just like any modular language
(such as C or COBOL) could be
used to write OO code. So, why
not just write in C and forget
about C++ or Java? The answer
lies in building on what we know
to provide another way of thinking
about systems and their imple-
mentation. Agents, then, are an
evolution rather than a revolution.

The rest of this section explains
those aspects of agents that are
different from the conventional
OO approach (i.e., the way OO is
commonly practiced and sup-
ported by most OO languages,
such as C++ and Smalltalk).
Different, here, does not mean
bad or good — only different. In
the end, you might conclude that
agents are really just enhanced
objects or that agents and objects
are different but can peacefully
coexist and even support one
another in the same system.
Either way, the agent-based way
of thinking brings with it a useful
and important perspective for sys-
tem development. If we can
imagine agents as a pattern for
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systems, we can avoid any of the
“OO0 versus agents” controversy
and just get on with developing
systems in a richer way. Both
approaches are useful for IT
development.

Agents Are Autonomous

Since a key feature of agents

is their autonomy, agents are
capable of initiating action
independent of any other entity.
However, such autonomy is

best characterized in degrees,
rather than simply being present
or not. To some degree, agents
can operate without direct exter-
nal invocation or intervention.

Dynamic Autonomy

Autonomy has two independent
aspects: dynamic autonomy and
nondeterministic autonomy.
Agents are dynamic because they
can exercise some degree of
activity. As illustrated in Figure 10,
an agent can range from passive
to entirely proactive. For exam-
ple, although ants are basically
reactive, they exhibit a small
degree of proactivity when

they choose to walk, rest, or eat.
A supply chain agent can react

to an order being placed and

be proactive about keeping its

list of suppliers up to date.

GM paint booths are treated as
agents. Here, information about
an unpainted car or truck coming
down the line is posted in an
automated form that is accessible
to all paint booths. When a paint
booth nears completion of its
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current job, it basically says,
“Hmmm, I'm running out of work,
I'll look over at the jobs posted.”
If the booth is currently applying
the color of paint required by an
upcoming job, it will bid more for
the job than a booth having a dif-
ferent color. Other bidding crite-
ria could include how easy or
important the job is. In a top-
down, planned, “push-through”
world, if one booth malfunctions,
the plan would require immediate
recomputing; with bottom-up,
“pull-through” paint-booth agents,
there are other booths to pick up
the bidding slack at a moment’s
notice [11].

Agents can react not only to spe-
cific method invocations but also
to observable events within the

environment. Proactive agents
will actually poll the environment
for events and other messages to
determine what action they
should take. To compound this,
in multiagent systems, agents can
be engaged in multiple parallel
interactions with other agents —
magnifying the dynamic nature of
agents. In short, an agent can
decide when to say “go.”

Obijects, in contrast, are conven-
tionally passive, with their meth-
ods being invoked under a caller’s
thread of control. The term
autonomy barely applies to an
entity whose invocation depends
solely on other components in the
system. However, UML and Java
have recently introduced event-
listener frameworks and other

Proactive o
n
Clock Colony
Supply Chain
Agent
o
E > Shopping
e A Agent
>
8§
o GM Paint
Java/UML Booth
Object
Ant
Reactive
. Object
Passive
Predictable Unexpected

Unpredictable:

Can Say “No”

Figure 10 — Two aspects of autonomy (based on collaborative work
with Van Parunak).
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mechanisms that allow objects to
be more active. In other words,
objects are now capable of some
of the dynamic capability of
agents.

Unpredictable Autonomy

Agents can also employ some
degree of unpredictable (or non-
deterministic) behavior. When
observed from the environment,
an agent can range from being
totally predictable to completely
unpredictable (see Figure 10 on
previous page). For example, an
ant that is wandering around look-
ing for food can appear to be tak-
ing a random walk. However,
once pheromones or food are
detected, its behavior becomes
reasonably predictable. In con-
trast, it is difficult to predict which
GM paint station will paint which
vehicle. The behavior of a shop-
ping agent might be highly unpre-
dictable. For example, giving it
criteria for a gift will not predict
exactly which gift it will choose.
In fact, the agent might return
empty handed because it did not
find any gifts that match the crite-
ria. In other words, the agent can
also say “no.”!

Conventional objects do not have
to be completely predictable.
However, the typical usage and

IThe FIPA standards organization states that
all agents must be able to handle all mes-
sages that they receive. Here, an agent may
choose various actions, such as respond in
a manner of its choosing, decide that the
request is outside of its competency, ignore
the message because it is not well formed,
or just refuse to do it on various grounds.
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direct support with OO languages
tends toward a more predictable
approach. For instance, when a
message is sent to an object, the
method is predictably invoked.
Yes, an object may determine
whether or not to process the
message and how to respond if it
does. However, in common prac-
tice, if an object says no, it is con-
sidered an error situation; with
agents, this is not the case.

Usually, object classes are
designed to be predictable,

to facilitate buying and selling
reusable components. Agents are
commonly designed to determine
their behavior based on individual
goals and states, as well as the
states of ongoing conversations
with other agents. Although OO
implementations can be devel-
oped to include nondeterministic
behavior, this is common in
agent-based thinking.

Agent behavior can also be unpre-
dictable because the agent-based
approach has a more “opaque”
notion of encapsulation. First, an
agent’s knowledge can be repre-
sented in a manner that is not
easily translated into a set of
attributes. Even if an agent’s state
were publicly available, it may be
difficult to decipher or under-
stand. This is particularly true
when the agent involves neural
networks or genetic structures.
You can look at it, but you can’t
always understand what you see.

Second, the requested behaviors
that an agent performs may not
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even be known within an active
system. This is a clear distinction
from object systems, because cur-
rent OO languages only let you
ask an object what interfaces it
supports. Since the programmer
needs to have some idea what
interface to ask for, this makes
coding difficult. In OO, there is no
provision in current languages for
an object to “advertise” its inter-
faces. In contrast, an agent can
employ other mechanisms, such
as publish/subscribe, protocol reg-
istration, and “yellow page” and
“white page” directories. Another
common mechanism provides
specialized broker agents to
which other agents can make
themselves known for various
purposes but are otherwise
unlisted to the rest of the agent
population.

Lastly, the underlying agent com-
munication model is usually asyn-
chronous. This means that there
is no predefined flow of control
from one agent to another. An
agent may autonomously initiate
internal or external behavior at
any time, not just when it is sent
a message [12]. Asynchronous
messaging and event notification
are part of agent-based messaging
systermns, and agent languages
need to support parallel process-
ing. These are not part of the
run-of-the-mill OO language.
Those that require such function-
ality in an OO system typically
layer these features on top of the
object model and OO environ-
ment. Here, the agent model
explicitly ties together the objects
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(data and functionality) with the
parallelism (execution autonomy,
thread per agent, etc.). According
to Geoff Arnold of Sun Micro-
systems, “Just as the object
paradigm forced us to rethink our
ideas about the proper forms of
interaction — access methods
versus direct manipulation, intro-
spection, etc. — so agents force
us to confront the temporal impli-
cations of interaction — messages
rather than RMI, for instance.”

Agents Are Interactive

Interaction implies the ability to
communicate with the environ-
ment and other entities. As illus-
trated in Figure 11, interaction can
also be expressed in degrees. On
one end of the scale, object mes-
sages (method invocation) can be
seen as the most basic form of
interaction. A more complex
degree of interaction would
include those agents that can
react to observable events within
the environment. For example,
food-gathering ants don’t invoke
methods on each other; their
interaction is indirect, through
direct physical effects on the envi-
ronment. In multiagent systems,
agents can be engaged in multi-
ple, parallel interactions with
other agents. Here, agents can
act as a society.

One Method Per Message

An object’s message may request
only one operation, and that oper-
ation may only be requested via a
message formatted in a very
exacting way. The OO message

©2000 CUTTER CONSORTIUM

broker has the job of matching
each message to exactly one
method invocation for exactly
one object.

Agent-based communication can
also use the method invocation of
0O0O. However, the demands that
many agent applications place on
message content are richer than
those commonly used by object
technology. Although agent com-
munication languages (ACLs) are
formal and unambiguous, their
format and content vary greatly.
In short, an agent message could
consist of a character string
whose form can vary yet it obeys
a formal syntax, while the conven-
tional OO method must contain
parameters whose number and
sequence are fixed. Theoretically,
this could be handled with
objects by splitting the world into
two portions: one including mes-
sages for which we have conven-
tional methods, another including
messages that we send as strings.

To support string-based mess-
ages in an OO language, you
could either anticipate every
possible variation by supplying

a specialized method for each

or use a general utility Accept-
CommunicativeString method.

The AcceptCommunicative-
String method could cover the
multitude of services that an
object might handle. However,
with just a single method, the
underlying services would not be
part of the published interface. In
the traditional OO environment,
such an environment would be
boring and not very forthcoming.
In agent-based environments,
agent public services and policies
can be made explicit through a
variety of techniques (described
earlier).

Agent Communicative Languages

Since we may wish to send a
message to any (and every)
agent, we need the expressive
power to cover all desired situa-
tions — including method invo-
cation. Therefore, an ACL is
necessary for expressing commu-
nications among agents and

even objects. The ACL syntax
could be specially crafted for
each application. However, the
lack of standardization would
quickly result in a tower of Babel.
Here, two applications could have
difficulty interacting with one
another; for an entire organiza-
tion, it would be totally impracti-
cal. Standard ACL formats, then,

Supply Chain
Objects Ants Agents
Method g Society
Invocation [ 1 Interaction
Simple » Complex
Figure 11 — Degrees of interaction.
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would be desirable. Two of the
most popular general-purpose
ACLs are KQML and the FIPA ACL.
These ACLs communicate agent
speech acts, specify ontologies,
and participate in discussion pat-
terns called protocols. (See Part 1
of the Executive Report, Vol. 3, No.
4, for more information.)

Conversations and Long-Term
Associations

Another way in which agent inter-
action can be more than just
method invocation is that agents
can be involved in long-term con-
versations and associations.
Agents may engage in multiple
transactions concurrently, through
the use of multiple threads or
similar mechanisms. In an agent
messaging environment, each
conversation can be assigned a
separate identity. Additionally,
either a unique message destina-
tion or a unique identifier can be
used to sort out the threads of
discourse. Conventional OO lan-
guages and environments have
difficulty supporting such a
requirement, directly or indirectly.
It should be mentioned that
objects could be used for the ele-
ments of agent conversation —
including the conversation itself.
In other words, agents can
employ objects for those situa-
tions requiring entities with little
autonomous or interactive ability.

Third-Party Interactions

Arnold has considered the ques-
tion of third-party interactions,
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which are very hard for strongly
typed object systems to handle.
Here, two patterns come to mind.
The first involves a broker that
accepts a request and delegates it
to a particular service provider
based on an algorithm that is
independent of the type of service
interface (e.g., cost, reachability).
The second involves an anon-
ymizer that hides the identity of a
requester from a service provider.
Models based on strong typing,
such as CORBA, Remote Method
Invocation, and Jini, cannot easily
support these patterns.

Philosophical Differences

Two key areas that can differenti-
ate the agent-based approach
from traditional OO are autonomy
and interaction. However, there
are other ways in which agents
may differ from objects. The list
below describes some underlying
concepts that agent-based sys-
tems can employ. None of them
are universally used by agents,
and no agent system is required
to use any of them.

m Decentralization. Objects
can be thought of as centrally
organized because an object’s
methods are invoked under the
control of other components in
the system. Yet some situa-
tions require techniques that
are decentralized and self-
organized. For example, clas-
sical ballet requires a high
degree of centralization called
choreography, while at the
other extreme the processes
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of nature involve a high degree
of individual direction. Most
businesses require a balance
of standardized procedures
and individual initiative: one
extreme or the other would be
detrimental to the business.

Supply chain systems can be
planned and centrally orga-
nized when the business is
basically stable and pre-
dictable. In unstable and
unpredictable environments,
supply chains should be decen-
tralized and self-organized (an
option not supported by com-
mercial supply chain systems
today). Agent-based environ-
ments can employ both cen-
tralized and decentralized
processing. Although agents
can certainly support central-
ized systems, they can also
provide us with the ultimate in
distributed computing.

Multiple and dynamic clas-
sification. In OO languages,
objects are created by a class
and, once created, may never
change their class or become
instances of multiple classes
(except by inheritance).
Agents provide a more flexible
approach. For example, a par-
ticular agent can be a person,
employee, spouse, landowner,
customer, and seller all at the
same time (or at different
times). When the agent is an
employee, that agent has all
the state and procedural ele-
ments consistent with being
an employee. If the agent is
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terminated from his or her job,
the employment-related state
and procedural elements are
no longer available to the
agent. Whether employed or
not, the agent is still the same
entity — it just has a different
set of features. The ability to
express roles and role changes
is not new to OO. However,
most OO languages do not
directly support this mecha-
nism (despite the fact that
UML does).

Furthermore, agents can play
different roles in different
domains. When you go to work,
you play the employee role.
When you return home, you
change roles — for example,
playing the spouse role. OO
languages do not directly sup-
port such domain-dependent
mechanisms. The single-class
OO approach is efficient and
reliable; the multiple and
dynamic approach provides
flexibility and more closely
models our perception of the
world. Agents can use either
approach; the choice belongs
to the system designer.

Business concepts. Agent-
based systems can support
concepts such as rules,
constraints, goals, beliefs,
desires, and responsibilities.
Although object systems are
being built to include these
(particularly the IF-THEN rules
of expert systems), they are not
directly supported by tradi-
tional OO. In other words,
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some agent-based approaches
expressly consider these
notions as useful components
of its entities; the traditional
OO approach does not. We
could either extend objects
with these agent-based con-
cepts and call them objects++
or simply refer to them as
agents. The result is essentially
the same: we have extended
the way we can build systems
using an agent-based view.

Instance-level features. The
features possessed by each
object are defined by its class
— a benefit also enjoyed by
agents. However, each agent
can acquire or modify its own
features; i.e., features that are
not defined at the class level,
but at the individual agent (or
instance) level. In other words,
if an individual agent has the
ability to learn, it can change its
own behavior, permitting it to
act differently than any other
agent. If an agent can change
itself, it can add (as well as
subtract) features dynamically.
For example, with genetic pro-
gramming software, agents are
created genetically. Each “par-
ent” contributes some portion
of an offspring agent’s genetic
string, in much the same way
this occurs in nature. This
approach is particularly popular
in one area of agent-based sys-
tems known as atrtificial life.
(Artificial life is the study of
man-made systems that exhibit
the behavioral characteristic

of natural living systems. It

models “life as we know it”
within the larger picture of “life
as it should be.”)

Small in impact [10]. Both
objects and agents can be
described as slim or fat, small
grained or large grained.
Additionally, in systems with
large numbers of agents or
objects, each can be small in
comparison with the whole
systemm. However, an individual
agent can have less impact on
a system than an object. For
example, each ant is an almost
negligible part of the entire ant
colony. As a result, the behav-
ior of the whole tends to be
stable, despite performance
variations or the death of a
single agent. In an agent-based
supply chain, if a supplier or

a buyer is lost, the collective
dynamics can still dominate.

If an object is lost in a system,
an exception is raised.

Small in time. Naturally occur-
ring agent systems can forget.
Ant pheromones evaporate;
our own memories can fade.
Even the death of unsuccessful
organisms in an ecosystem is
an important mechanism for
freeing up resources for better
adapted organisms. Such
analogies work for both agent-
based and OO software sys-
tems. With agents, such
comparisons are a natural

part of the approach.

Small in scope. Animals can
usually sense only their imme-
diate vicinity. Despite this
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restriction, they can generate
effects that extend far beyond
their own limits. For example,
an ant can sense a trail of
pheromones only when its path
intersects with the pheromone
trail, but the ant’s ignorance of
the vast pheromone network
laid out by all the other ants
does not prevent the overall
system from working. In other
words, it is not necessary — in
fact, it is not feasible — for
every agent to know every-
thing. Instead of being omni-
scient and omnipotent, large
agent-based systems are local
sensing and acting. Objects,
too, employ this analogy to
some extent because objects
generally only interact with
other objects linked to them.
Also, objects using integrated
databases can be programmed
to access databases having
only local knowledge.
Although being restricted to
local knowledge is not a new
concept, the notion is com-
monly used with agents.

m Emergence. The interaction
of many individual agents can
give rise to secondary effects
where groups of agents behave
as a single entity. For example,
ant colonies, flocks of birds,
and stock markets have emer-
gent qualities. Each consists
of individual agents acting
according to their own rules
and even cooperating to some
extent. Yet, ants colonies
thrive, birds flock, and markets
achieve global allocations of
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resources — all without a
central cause or an overall
plan. Agents can possess just
a few very simple rules to pro-
duce emergence. In fact,
when constructing agent-based
systemns, starting out with sim-
ple agents is important
because emergence is then
easier to understand and har-
ness. More complexity can be
added over time to avoid being
overwhelmed.

Since traditional objects do not
interact without a higher-level
thread of control, emergence
does not usually occur. As
more agents become decen-
tralized, their interaction is
subject to emergence — either
positive or negative. This
phenomenon is both good
news and bad news for large,
multiagent systems.

m Analogies from nature. The
autonomous and interactive
character of agents more
closely resembles natural
systemns than do objects.

Since nature has long been
successful, identifying analo-
gous sit-uations to use in agent-
based systems is sensible. For
example, agents can die when
they lack supportive resources.
In supply chain manufacturing,
when a manufacturing-cell
agent cannot operate profitably,
it dies of “malnutrition.”
Another manufacturing cell
could come by and scavenge
useful bits from the newly
dead cell.
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Agents can exhibit properties
of parasitism, symbiosis, and
mimicry. They can participate
in “arms races” where agents
can learn and outdo other
agents. Agents can participate
in sexual (and asexual) repro-
duction that can incorporate
principles from Darwinian and
Lamarckian evolution. Agent
societies can exhibit political
and organizational properties
— whether they’re organized,
anarchic, or democratic. In
short, nature can provide a rich
trove of ideas for multiagent
systermn design.

Agents Versus Objects Conclusion

Agents employ some of the mech-
anisms and philosophies used by
objects. In fact, many software
developers strongly advocate
composing agents from objects —
building the infrastructure for
agent-based systems on top of
the kind of support systems used
for OO software systems. For
example, many structures and
parts of agents can be reasonably
expressed as objects. These
might include agent names, agent
communication handles, agent
communication language
components (including encod-
ings, ontologies, and vocabulary
elements), and conversation
policies.

In multiagent systems, an addi-
tional layer of software compo-
nents may be naturally expressed
as objects and collections of
objects. This is the underlying
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infrastructure that embodies the
support for agents composed of
object parts. This might include
communication factories, trans-
port references, transport policies,
directory elements, and agent
factories.

Agents are autonomous entities
that can interact with their envi-
ronments. But are they just
objects with extra attributes or
are they an entirely different
approach? And how important is
it to answer this question? What
is important is that objects and
agents are distinct enough to treat
them differently. When we design
systermns, we can choose a well
thought-out mixture from both
approaches. We can even build
aggregates in which agents con-
sist of both objects and other
agents, and vice-versa. In short,
there is no right answer here —
only a useful one. For Grady
Booch, the answer is clear:

Agents are important/useful
because:

m They provide a way to reason
about the flow of control in a
highly distributed system.

m They offer a mechanism that
yields emergent behavior
across an otherwise static
architecture.

m They codify best practices in
how to organize concurrent
collaborating objects.
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1984 for clinical, managed care, client
management, engineering and manu-
facturing design, and aircraft control
simulation applications.

JASON MATTHEWS

on transitioning to enterprise
component technology

Jason Matthews is cofounder of
Genesis Development. He has nearly
20 years of technical and management
experience in software development
and related professional services.

Mr. Matthews is a pioneer in the use
of component/object technology for
large-scale distributed systems and
the Internet, and a specialist in the
process of transitioning large organi-
zations to component technology.

Mr. Matthews has managed end-user
information systems organizations
and the development of commercial
software products. He has been a
consultant to a wide range of indus-
tries, including financial services,
insurance, healthcare, manufacturing,
telecommunications, and energy.



SENIOR CONSULTANTS

JAMES ODELL

on object-oriented methodologies
and agent technology

James Odell was an early innovator of
information engineering methodolo-
gies, and has spent most of his 30-year
career developing better methods to
understand, communicate, and man-
age system requirements. Working
with the Object Management Group
(OMG) and other major methodolo-
gists, Mr. Odell continues to innovate
and improve object-oriented methods
and techniques. He participated in the
development of the UML, and is the
cochair of both the OMG’s Object
Analysis and Design Task Force as well
as the Agents Work Group. Formerly,
Mr. Odell was the principal consultant
for KnowledgeWare, Inc., where he
pioneered the concepts of data mod-
eling, information strategy planning,
and CASE technology application.

Mr. Odell has coauthored several books
with James Martin, including the most
recent title Object-Oriented Methods:
A Foundation, UML Edition.

CHRIS PICKERING

on e-business trends and strategies
Chris Pickering, president of the
research and consulting firm Systems
Development, Inc., analyzes industry
practices. Mr. Pickering’s areas of
focus include information architecture,
business-IT alignment, technology
acquisition and deployment, organiza-
tional change, system modeling, and
software practices. He is the author of
the survey-based study E-Business
Trends, Strategies, and Technologies
and the periodic Survey of Advanced
Technology, which tracks the use of
advanced information technologies,
assesses the effectiveness of that use,
and identifies the benefits and hazards
of using the leading technologies. He
then applies the lessons learned from
the research to helping clients maxi-
mize their information technology
investments. Mr. Pickering’s articles
and his research findings have
appeared in leading industry maga-
zines and books, and he is a speaker
at a variety of software conferences.

JOHN R. RYMER

on tools, middleware, and
application development

for distributed systems

John Rymer is president of Upstream
Consulting, which he founded in 1997.
Mr. Rymer is a well-known strategy

advisor and a veteran industry analyst.
Since 1989, Mr. Rymer has developed a
strong track record of helping software
companies solve difficult market and
technical problems. He specializes in
application development technology
for distributed systems, including tools
and middleware. Mr. Rymer is a former
vice president and founding analyst at
Giga Information Group, Inc., where he
was responsible for tracking applica-
tion development technology and prod-
ucts. Mr. Rymer has been a keynote
speaker at OOPSLA, Networld +
Interop, ObjectWorld, and other
industry conferences.

GREG SABATINO

on architecting and implementing
highly scalable distributed

e-business solutions

Greg Sabatino, cofounder of
NetNumina Solutions, specializes

in the architecture and implementation
of highly scalable distributed e-business
solutions. Mr. Sabatino’s career has
centered on the training, support, and
delivery of distributed computing archi-
tectures and applications for IT organi-
zations worldwide. His efforts focus on
enabling organizations to successfully
integrate and employ emerging tech-
nologies in order to realize a strategic
advantage. Mr. Sabatino’s experience
spans the retail, petrochemical,
telecommunications, pharmaceutical
and, especially, finance industries.

Mr. Sabatino contributes to several
industry publications and speaks at
conferences on a variety of distributed
computing issues.

KENT SEINFELD

on enterprise information
architecture development

Kent Seinfeld is the founder of Enright
Consulting, a small group of senior IT
consultants. Mr. Seinfeld specializes in
enterprise information architecture
development. Mr. Seinfeld is a former
senior vice president of IT and served
in three different positions with
CoreStates Bank. He was the founder
and manager of the Technology
Planning and Research group at
CIGNA, a global insurance and financial
service company, where he was
responsible for computing standards,
security policy, development method-
ologies, and the research and develop-
ment program. Mr. Seinfeld was the
CIO for Girard Bank. Earlier in his
tenure he was the principal architect in

the design and implementation of a
large-scale highly integrated banking
system. This system evolved into the
foundation of one of the first large ATM
networks.

ROGER SESSIONS

on distributed middle-tier
technologies

Roger Sessions is the world's leading
expert on Microsoft's distributed
middle-tier technologies, including
COM, DCOM, and MTS. Prior to start-
ing his company, ObjectWatch, Inc.,
Mr. Sessions worked at IBM, where he
was an architect of one of the CORBA
services. He was also a lead architect
for IBM's implementation of the
CORBA Persistence Service, gaining an
unparalleled perspective on middle-
tier technologies. Mr. Sessions has
written four books; his most recent is
COM and DCOM: Microsoft’s Vision
for Distributed Objects. He writes the
highly respected and often controver-
sial online ObjectWatch Newsletter. In
addition to frequent speaking engage-
ments worldwide, Mr. Sessions writes
articles for many industry publications.

ED YOURDON

on object-oriented design

and analysis

Ed Yourdon, chairman of Cutter
Consortium, is widely known as the
lead developer of the structured
analysis/design methods of the 1970s.
He was a codeveloper of the Yourdon-
Whitehead method of object-oriented
analysis/design and the popular Coad-
Yourdon OO methodology. Mr. Yourdon
began his career at Digital Equipment
Company more than 30 years ago.

He has been involved in a number of
pioneering computer technologies,
such as time-sharing operating systems
and virtual memory systems. He is cur-
rently a member of the Airlie Council, a
group of high-end advisors formulating
software “best practices” for the US
Department of Defense. Mr. Yourdon

is the editor of the Cutter IT Journal.

He has authored more than 200 tech-
nical articles and written 25 computer
books since 1967, including The Rise
and Resurrection of the American
Programmer and Death March: The
Complete Software Developer’s Guide
to Surviving “Mission Impossible”
Projects.



