
Advanced Techniques in
Artificial Intelligence

Curso 2021-2022

German Rigau

german.rigau@ehu.eus

Grado en Ingeniería en Informática

 2

Topics

 Intelligent Agents
 Multiagent Systems
 Planning

Advanced Techniques in Artificial Intelligence

3

3 Planning

1. Introduction
2.Classical planning
3.Real world planning

Advanced Techniques in Artificial Intelligence

4

Introduction

 Since the early '70s, the AI community specialized in planning
has been concerned with the design problem of artificial
agents capable of acting in an environment.

 Planning can be seen as a form of automatic programming:
the design of a course of action that will satisfy a certain
objective.

 Within the symbolic AI community, it has been assumed for
some time that some type of planning system should be part
of the core components of any artificial agent

 The basic idea is to provide the planning agent:
 representation of the objective to be achieved

 representation of the actions you can perform

 representation of the environment

 ability to generate a plan to achieve the objective

Advanced Techniques in Artificial Intelligence

5

How to represent …
 Objective to achieve
 State of the environment
 Actions available for the agent
 The plan itself

KRR: Knowledge Representation and Reasoning

objective /
intention /
task

State of the
environment

Possible
actions

Planner

Plan to follow

Advanced Techniques in Artificial Intelligence

6

Introduction

 A plan is a sequence (list) of actions, from an initial state to a
final state.

 Planning can be seen as a search problem in a state space.

Δ
0 Δ

n

α123α1

α17

Advanced Techniques in Artificial Intelligence

7

Introduction

 Classic search algorithms are interested only in returning the final
state or solution-state.

 Planning algorithms are not only interested in finding the solution
state, but in maintaining all the intermediate states that lead from
the initial state to the end.

 Planning algorithms often use not only the knowledge within the
heuristic, but also the descriptions of the effects of the actions to
guide their search (they use the logical structure of the problem).

 Many planning algorithms reduce the complexity of the problem
by decomposing it into sub-objectives
 This can only be done in real problems that are decomposable or quasi-

decomposable (the planner breaks down the problem and then
resolves small conflicts when recomposing the solution)

Advanced Techniques in Artificial Intelligence

8

Introduction

 Our vision of the world is incomplete: limited rationality

 The world changes constantly: dynamism

 The world is not deterministic: uncertainty

 The actions take time to execute: temporary reasoning

 Our goals are contradictory: dependency between goals

 Not all plans are good: quality

 The plans are not always valid: execution and replanning

 Adaptation to the world: learning

 Planning and philosophy: beliefs, intentions and desires

Advanced Techniques in Artificial Intelligence

9

Introduction

 Mars Exploration Rovers [NASA]

 Planning of the tasks to be performed during a Martian day is
automatically carried out by a program based on the
exploration objectives set by the mission personnel on Earth.

Advanced Techniques in Artificial Intelligence

10

Introduction

 Types of Planners:
 Domain-specific planners:

 Specifically designed for a domain and can hardly be
used in other domains: many practical applications.

 Domain independent planners:
 The planning mechanism is general enough to be used

in domains that meet certain restrictions: Not efficient
and Not practical applications

 Configurable planners to the domain:
 The planning mechanism is domain independent, but

the entry to the scheduler includes knowledge of the
domain to restrict the search of the scheduler.

Advanced Techniques in Artificial Intelligence

11

Classical planning

 Restrictions of the domain (1):

 Restriction 0: finite. Finite set of states.
 Restriction 1: fully observable. You have a complete

knowledge of the environment. The planner perfectly
perceives the state of the environment and the effect of
its actions on the environment

 Restriction 2: deterministic. You can predict and
predefine the effects of all actions).

 Restriction 3: static. The changes happen only when the
planning agent acts.

 Restriction 4: discrete. The environment can be
described discreetly:

 Time, actions, objects, effects, ...

Advanced Techniques in Artificial Intelligence

12

Classical planning

 Restrictions of the domain (2):

 Restriction 5: implicit time. The actions have no
duration, the transition states are instantaneous.
They do not represent time explicitly.

 Restriction 6: sequential plans. A solution is a
linearly ordered sequence of actions.

 Restriction 7: Offline planning. The planner does
not take into account any changes that may occur in
the environment while it is planning. Plan according
to the initial state and given objectives without
observing the changes, if any.

 Restriction 8: achievable goal (!)

Advanced Techniques in Artificial Intelligence

13

Classical planning

 Ac ={α
1
, ... , α

n
}: set of actions

 < P
α
, D

α
, A

α
> is descriptor of one action α ∊ Ac

 P
α
 is a set of formulas that characterize the precondition

of action α

 D
α
 is a set of formulas that characterize those facts that

become false by the execution of α ('delete list')

 A
α
 is a set of formulas that characterize those facts that

become true by the execution of α (‘add list’)

 π = (α
1
, ... , α

n
) is a plan

Advanced Techniques in Artificial Intelligence

14

Classical planning

 Open representation of knowledge about states, objectives and
actions.

 Formal language
 Ex: predicate logic, First Order Logic, ...

 States and goals (objectives) are represented by sets of logical
statements

 Ex: in(p1, bcn), plane(p1), ...
 It is common in some planners that what does not appear

explicitly represented in a state is false: closed world
assumption.

 The actions are represented by logical descriptions of
preconditions and effects

 Ex: action(fly(P, O, T),

PRECOND: in(P,O)∧plane(P)∧airport(O)∧airport(T),

EFFECT: ¬in(P,O)∧in(P,T))

Advanced Techniques in Artificial Intelligence

15

Classical planning

 STRIPS (STanford Research Institute Problem Solver)
(Fikes & Nilsson 1971) was one of the first of the
planning systems.

 For certain real problems it has been shown that STRIPS
does not have sufficient expressivity.

 ADL (Action Description Language) expands STRIPS
ideas

 Notations of STRIPS and ADL are adecuate for most real
problems and domains.

Advanced Techniques in Artificial Intelligence

16

Classical planning

 Since 1998, the planning research community has developed a
standard language for describing plans: Planning Domain
Description Language (PDDL)

 Initial objective: common language for global competition of
planners.

 Nowadays it has become a de facto standard

 WARNINGS:
 there are several versions of PDDL, from 1.0 to 3.1, each with

different levels of expressiveness

 There is no planner that supports the complete specification 3.1,
but subsets of it.

Advanced Techniques in Artificial Intelligence

17

Classical planning: STRIPS

 Representation of states: planners decompose the world
into logical conditions, representing a state as a
conjunction of positive literals:
 Propositions: poor ∧ boring

 FOL literals: in(plain1, bcn) ∧ in(plain2, jfk)

 Representation of objectives: an objective is a partially
specified state
 An state s satisfy an objective o if s contains all atoms from

o (and possibly some other)
 Ex: state (rich ∧ famous ∧ handsome) satisfies

objective (rich ∧ famous)

Advanced Techniques in Artificial Intelligence

18

Classical planning: STRIPS

 Representation of actions: the actions are specified in terms of
the preconditions that must be fulfilled before they can be
executed and the effects they produce once they have been
executed

 Ex: action(fly(P, O, T),

PRECOND: in(P,O)∧plane(P)∧airport(O)∧airport(T),

EFFECT: ¬in(P,O)∧in(P,T))

 The precondition is a conjunction of positive literals that
specifies that it must be true in a state before the action is
executed. All the variables in the precondition must appear in
the list of parameters of the action.

 The effect is a conjunction of literals describing how the
current state changes when the action is executed. All
variables must also appear in the action parameter list.

Advanced Techniques in Artificial Intelligence

19

Classical planning: STRIPS

 An action is applicable to any state that satisfies the
precondition

 In FOL: there is a substitution for the variables in the
precondition. For example, the state:

in(p1, jfk) ∧ plane(p1) ∧ in(p2, bcn) ∧ plane(p2) ∧
airport(jfk) ∧ airport(bcn)

 satisfies the precondition of the flying action:

in(P, O) ∧ plane(P) ∧ airport(O) ∧ airport(D)

 The result of executing the action in a state s is a state s' to
which the positive literals of the effect are added and the
negative literals are eliminated

 For example, the effect of the fly action on the previous
state:

 in(p1, jfk) ∧ plane(p1) ∧ in(p2, bcn) ∧ plane(p2) ∧
airport(jfk) ∧ airport(bcn)

 Removed: in(p1,jfk)

Advanced Techniques in Artificial Intelligence

20

Example STRIPS: Air cargo transportation

 Two cargo (c1 and c2) are in 2 airports (bcn, jfk)

 We have two planes (p1 and p2) to transport the loads, one in
each airport

 We describe the initial state like this:

 start(in(c1, bcn) ∧ in(c2, jfk) ∧ in(p1, bcn) ∧ in(p2, jfk) ∧
cargo(c1) ∧ cargo(c2) ∧ plane(p1) ∧ plane(p2) ∧
airport(bcn) ∧ airport(jfk))

 The goal at the end is have c1 in jfk and c2 in bcn

 We describe the objective as follows:

 goal(in(c1, jfk) ∧ in(c2, bcn))

Advanced Techniques in Artificial Intelligence

21

Example STRIPS: Air cargo transportation

 We describe the actions of loading, downloading and flying:

 action(load(C, P, A),

PRECOND: in(C, A) ∧ in(P, A) ∧ cargo(C) ∧ plane(P) ∧ airport(A)

EFFECT: ¬in(C, A) ∧ inside(C, P))

 action(download(C, P, A),

PRECOND: inside(C, P) ∧ in(P, A) ∧ cargo(C) ∧ plane(P) ∧
airport(A)

EFFECT: in(c, AE) ∧ ¬inside(C, A))

 action(fly(P, O, T),

PRECOND: in(P, O) ∧ plane(P) ∧ airport(O) ∧ airport(T)

EFFECT: ¬in(P, O) ∧ in(P, T))

Advanced Techniques in Artificial Intelligence

22

Example STRIPS: Air cargo transportation

 Solution: the plan is composed of a sequence of actions.

 In this case there are several solutions:

 Ex. Solution 1: we use the two planes to make the transfer

[load(c1, p1, bcn), fly(p1, bcn, jfk), download(c1, p1, jfk),
load(c2, p2, jfk), fly(p2, jfk, bcn), download(c2, p2, bcn)]

 Ex. Solution 2: we use just one plane

[load(c1, p1, bcn), fly(p1, bcn, jfk), download(c1, p1, jfk),
load(c2, p1, jfk), fly(p1, jfk, bcn), download(c2, p1, bcn)]

Advanced Techniques in Artificial Intelligence

23

STRIPS example: block world

 A set of blocks, a table and a robot arm.

 All blocks are equal in size, shape and color. They differ in
name.

 The table has unlimited extension

 Each block can be on top of the table, on top of a single block
or held by the robot's arm.

 The robot's hand can only hold one block at a time.

 Troubleshooting involves moving from an initial configuration
(state) to a state where certain goals are achieved.

A

B

D C

Initial state

C

B

A

Final state

Advanced Techniques in Artificial Intelligence

24

STRIPS example: block world

 The following predicates could be used:

 on(X, Y) : block X is over block Y.

 in_table(X) : block X is on the table.

 free(X) : block X has no block over.

 in_hand(X) : the robot holds the block X

 free_hand : the robot’s hand is free (not holding any block)

 Initial state

 on(a, b), on(b, d), in_table(d), in_table(c), free(a), free(c),
free_hand

 Goals:

 in_table(a), on(c, b)

Advanced Techniques in Artificial Intelligence

25

STRIPS example: block world

 UNSTACK(X, Y)
precondition: on(X,Y), free(X), free_hand
added: in_hand(X), free(Y)
removed: on(X, Y), free(X), free_hand

 TAKE(X)
precondition: in_table(X), free(X), free_hand
added: in_hand(X)
removed: in_table(X), free(X) , free_hand

 STACK(X, Y)
precondition: in_hand(X), free(Y)
added: on(X, Y), free(X), free_hand
removed: in_hand(X), free(Y)

 LEAVE(X)
precondition: in_hand(X)
added: in_table(X), free(X), free_hand
removed: in_hand(X)

Advanced Techniques in Artificial Intelligence

26

Example: The Dock Worker Robots (DWR) domain

Advanced Techniques in Artificial Intelligence

27

Example: Shakey’s world

room 1
C
O
R
R
I
D
O
R

room 2

room 3

room 4

Shakey is a robot that
can move between several
rooms, push objects, climb
rigid objects, turn on and
turn off the lights.

Initial state

box 1

box 2

box 3

Shakey

switch 1

switch 2

switch 3

switch 4

Door 1

Door 2

Door 3

Door 4

Advanced Techniques in Artificial Intelligence

28

PDDL programming language

(define (domain DOMAIN_NAME)
 (:requirements [:strips] [:equality] [:typing] [:adl])
 (:predicates (PREDICATE_1_NAME [?A1 ?A2 ... ?AN])
 (PREDICATE_2_NAME [?A1 ?A2 ... ?AN])
 ...)

 (:action ACTION_1_NAME
 [:parameters (?P1 ?P2 ... ?PN)]
 [:precondition PRECOND_FORMULA]
 [:effect EFFECT_FORMULA]
)

 (:action ACTION_2_NAME
 ...)

...)

As there are different levels of expressiveness,
each description in PDDL says the necessary
requirements. The most common are:
: expressivity strips as in STRIPS
: equality the domain uses the predicate =
: typing the domain defines types of vars.
: adl extended expressiveness:
 1) disjunctions and quantifiers in
 preconditions and objectives,
 2) Quantified and conditional effects

Description of the domain

Advanced Techniques in Artificial Intelligence

29

PDDL programming language

Description of the problem

(define (problem PROBLEM_NAME)
(:domain DOMAIN_NAME)
(:objects OBJ1 OBJ2 ... OBJ_N)
(:init ATOM1 ATOM2 ... ATOM_N)
(:goal CONDITION_FORMULA))

Advanced Techniques in Artificial Intelligence

30

PDDL programming language

Description of the domain

(define (domain driverlog)
 (:requirements :strips :typing)
 (:types location locatable - object
 driver truck obj - locatable
)
 (:predicates
 (at ?obj - locatable ?loc - location)
 (in ?obj1 - obj ?obj - truck)
 (driving ?d - driver ?v - truck)
 (link ?x ?y - location) (path ?x ?y - location)
 (empty ?v - truck)
)
 (:action LOAD-TRUCK
 :parameters
 (?obj - obj
 ?truck - truck
 ?loc - location)
 :precondition
 (and (at ?truck ?loc) (at ?obj ?loc))
 :effect
 (and (not (at ?obj ?loc)) (in ?obj ?truck)))

(define (problem DLOG-2-2-2)
 (:domain driverlog)
 (:objects
 driver1 - driver
 truck1 - truck
 package1 - obj
 s0 - location
 s1 - location ...)
 (:init
 (at driver1 s12)
 (at truck1 s0)
 (empty truck1)
 (at package1 s0)
 (path s1 p1-0)
 (path p1-0 s1)
 ...
 (link s0 s1)
 (link s1 s0)
 ...)
 (:goal (and (at driver1 s1)
 (at truck1 s1)
 (at package1 s0)
)))

Description of the problem

Advanced Techniques in Artificial Intelligence

31

Classic Automatic Planning

 Most relevant approaches:

 State-space planning

 Planning in the space of plans (Plan-space planning or PSP)

 Hierarchical planning (Hierarchical Task Network Planning
or HTN)

 Other interesting results

 Reuse of Plans

 Domain-specific planning

Advanced Techniques in Artificial Intelligence

32

State-space

 Each node represents a state of the world
 The states are defined by a set of predicates and variables
 A plan is a path within the state space

Δ
0 Δ

n

α123α1

α17

Advanced Techniques in Artificial Intelligence

33

State space: Missionaries and cannibals

Initial state:
 the missionaries, the cannibals, and the ship are on the left bank

5 possible actions:
 Cross a missionary
 Cross a cannibal
 Two missionaries cross
 They cross two cannibals
 Cross a missionary and a cannibal

Advanced Techniques in Artificial Intelligence

34

State space: Missionaries and cannibals

 Target state:

 the missionaries, the cannibals, and the ship are on the right
bank

 Solution cost:

 Cost per edge: 1 for each crossing

 Path cost: number of crossings = path length
 Path solution:

 Four optimal solutions

 Cost = 11

Advanced Techniques in Artificial Intelligence

35

State space: Missionaries and cannibals

1c

1m

1c

2c
1c

2c

1c

2m

1m

1c

1m

1c

1c

2c

1m

2m

1c

2c

1c

1m

Advanced Techniques in Artificial Intelligence

36

State space strategies

 Forward search (progressive planning)

 The initial state of the search is the initial state of the problem

 At every moment we try to unify the preconditions with the
actions

 The description of the state is changed by adding or removing
literals from the effects of the actions

in(C1, BCN)
in(C2, JFK)
in(A1, BCN)
in(A2, JFK)
...

inside(C1,A1)
in(C2, JFK)
in(A1, BCN)
in(A2, JFK)
...

inside(C2,A2)
in(C1, BCN)
in(A1, BCN)
in(A2, JFK)
...

load(C2,A2,JFK)

load(C1,A1,BCN)

...

Advanced Techniques in Artificial Intelligence

37

Deterministic progressive planning

 Deterministic forward search:

 breadth-first search

 depth-first search

 best-first search (ej.: A*)

 greedy best first

 breadth-first search and best first are complete ...

 ... but they are not usually practical because they need too
much memory (exponential in the length of the solution)

 In practice, depth-first or greedy is often used

 Problem: they are not complete

 But classical planning has a finite set of states

 Depth-first search can be made complete by controlling the
cycles

Advanced Techniques in Artificial Intelligence

38

Deterministic progressive planning

 Problem: When the branching factor is very high:

 There are many applicable actions that do not lead us to the
objective

 Deterministic implementations can waste a lot of time trying
multiple irrelevant actions

 One possible solution: add domain-specific heuristics

Advanced Techniques in Artificial Intelligence

39

State space: Missionaries and cannibals

d
ep

th
 =

 3
d

ep
th

 =
 0

d
ep

th
 =

 1
d

ep
th

 =
 2

Advanced Techniques in Artificial Intelligence

40

State space strategies

 Backward search (backward planning)

 The initial state of the search is the final state of the problem

 At every moment, we try to unify with the effects of the actions.
Positive effects are removed from the description.

 The precondition literals are added except if they already
appear in the current description

 The search ends when all preconditions are satisfied by the
initial state of the problem

in(C2, BCN)
in(C1, JFK)

inside(C1,A1)
in(A1, JFK)
...

download(C2,A2,BCN)

download(C1,A1,JFK)

...

inside(C2,A2)
in(A2, BCN)
...

Advanced Techniques in Artificial Intelligence

41

State space strategies

 Problem of regressive planning

 Although it generates a somewhat smaller search space, it can
still be very large and somewhat inefficient

 Example:

 In the case of three independent actions a and b, an action c
that must always precede them, and that there is no path from
s0 to the necessary state as input of c

 The algorithm tries every possible order of a and b before
realizing that there is no solution.

abc

aac

bac

bbc

target...s
0

Advanced Techniques in Artificial Intelligence

42

STRIPS problems

 STRIPS is not complete:

 STRIPS cannot find a solution for some problems. For example,
by exchanging the values of two variables

 STRIPS cannot find the optimal solution in others, for example,
Sussman anomaly (1975):

Table

A B

C

Table

A

B

C

 {on(A,B), on(B,C)}

Advanced Techniques in Artificial Intelligence

43

STRIPS problems

 Interlaced plans for an optimal solution:

 Shorter solution to achieve on(A, B):
 move C from A on the table
 move A over B

 Shorter solution to achieve on(B, C):
 move B over C

 Shorter solution to achieve on(A, B) and on(B, C):
 move C from A on the table
 move B over C
 move A over B

 The optimal solution cannot be found by the STRIPS algorithm
because:

 STRIPS cannot change the sub-target during the search

Advanced Techniques in Artificial Intelligence

44

Advanced Techniques in
Artificial Intelligence

Curso 2022-2022

German Rigau

German.rigau@ehu.eus

Grado en Ingeniería en Informática

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

