Técnicas Avanzadas de Inteligencia Artificial Curso 2013-2014

German Rigau

german.rigau@ehu.es

http://adimen.si.ehu.es/~rigau

Grado en Ingeniería en Informática / Ingeniería en Informática

Técnicas Avanzadas de Inteligencia Artificial

Temario

- 1. Agentes Inteligentes
- 2. Sistemas Multiagentes
- 3. Planificación

Técnicas Avanzadas de Inteligencia Artificial

1 Sistemas Multiagentes

- 1. Introducción
- 2. Comunicación entre agentes
- 3. Plataformas: FIPA
- 4. Aplicaciones
- 5. JADE

- Muchos problemas son esencialmente distribuidos
- El conocimiento necesario para resolver un problema puede estar distribuido
- Un agente individual podría resolver el problema pero: concentramos toda la responsabilidad en ese agente ...
- Resolución Distribuida de Problemas (?)
- Los <u>sistemas multiagente</u> (MAS) son Sistemas
 Basados en Agentes y orientados a la resolución distribuida de problemas

- MAS: Sistema formado por un conjunto de componentes (semi) autónomos que poseen las siguientes características:
 - Individualmente, no tiene información completa ni capacidad para resolver el problema. Tiene un punto de vista limitado.
 - No hay un sistema de control global.
 - Los datos están descentralizados.
 - Computación asíncrona.

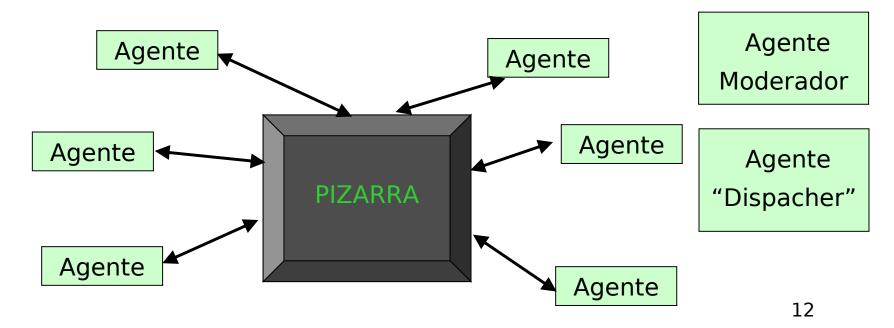
- Resolución distribuida de problemas
 - División del problema en subproblemas
 - Asignación de subproblemas a agentes específicos
 - Resolución de subproblemas
 - Los agentes pueden funcionar independientemente o bien compartir tareas o resultados
 - Combinación de sub-soluciones
 - Establecimiento de la responsabilidad en esta fase => necesidad de agente de coordinación

La resolución distribuida de problemas en sistemas multiagente sólo es apropiada cuando los agentes tienen <u>capacidades de</u> <u>comunicación</u> sobre las que pueden establecerse <u>estrategias de cooperación y</u> <u>negociación</u>.

- ¿Cómo formular, describir, descomponer problemas y sintetizar resultados entre un grupo de agentes inteligentes?
- ¿Cómo permitir a los agentes comunicarse e interactuar?
- ¿Qué lenguajes de comunicación y protocolos se pueden usar?
- ¿Qué arquitectura es la mas adecuada para construir Sistemas multi-agente prácticos?
- ¿Qué lenguajes y herramientas de desarrollo se pueden utilizar?
- ¿Cómo construir herramientas para soportar las metodologías de desarrollo?, etc.

- Problemática:
 - Descomposición del problema
 - Comunicación entre agentes
 - Coherencia en las actuaciones
 - Representación del conocimiento de otros agentes
 - Coordinación de acciones
 - Gestionar el uso de recursos
 - Evitar comportamientos globales no deseados
 - Diseño de MAS: metodología y desarrollo

1 Sistemas Multiagentes


- 1. Introducción
- 2. Comunicación entre agentes
- 3. Plataformas: FIPA
- 4. Aplicaciones
- 5. JADE

Las <u>capacidades de comunicación</u> son los instrumentos básicos con los que construir mecanismos de cooperación y negociación entre agentes.

- Métodos
 - Sistemas de pizarra
 - Paso de mensajes
- Lenguajes
 - KQML, Knowledge Query and Manipulation Language
 - FIPA ACL:
 - Foundation for Intelligent Physical Agents
 - Agent Comunication Language

Método: Sistemas de Pizarra

- Zona de trabajo común que permite a los agentes compartir todo tipo de información.
- Un SMA puede tener varias pizarras con distintos agentes registrados en cada una.
- No hay comunicación directa entre agentes

Método: <u>Paso de Mensajes</u>

- Protocolos de comunicación:
 - Lenguaje de comunicación, basado en la Teoría de los Actos del Habla (Speech Acts):
 - semántica común y conocida.
 - Proceso de comunicación
 - Formato de los mensajes

Método: Paso de Mensajes: Actos del habla

- Objetivo de la lingüística tradicional es entender el significado de las frases:
 - combinación de palabras con significado
- Un <u>acto del habla</u> designa las acciones intencionales en el curso de una conversación
 - Función <u>denotativa</u> del lenguaje determinar la verdad o falsedad de una frase
 - Función <u>conativa</u> es la utilizada para modificar el entorno o trasmitir órdenes

Método: <u>Paso de Mensajes: Actos del habla</u>

- Quien habla no sólo declara sentencia ciertas o falsas
- Quien habla realiza actos de habla:
 - peticiones, sugerencias, promesas, amenazas, etc.
- Cada <u>declaración</u> es un acto de habla

Método: <u>Paso de Mensajes: Actos del habla</u>

- <u>Locución</u>: producción de frases utilizando una gramática y un léxico
- <u>Ilocución</u>: acto realizado por el locutor para el destinatario mediante la declaración (utterance)
 - Fuerza ilocutoria (F):
 - afirmación, pregunta, petición, promesa, orden
 - Contenido proposicional (P):
 - objeto de la fuerza ilocutoria ~ F(P)
- <u>Perlocución</u>: efectos que pueden tener los actos ilocutorios en el estado del destinatario y en sus acciones, creencias y juicios
 - convencer, inspirar, persuadir, atemorizar

Método: <u>Paso de Mensajes: Actos del habla</u>

- Clasificación de las ilocuciones
 - Asertivas (informar)
 - Directivas (pedir y preguntar)
 - Comisivas (prometer)
 - Permisivas, prohibitivas y declarativas (causan eventos)
 - Expresivas (emociones y evaluaciones)

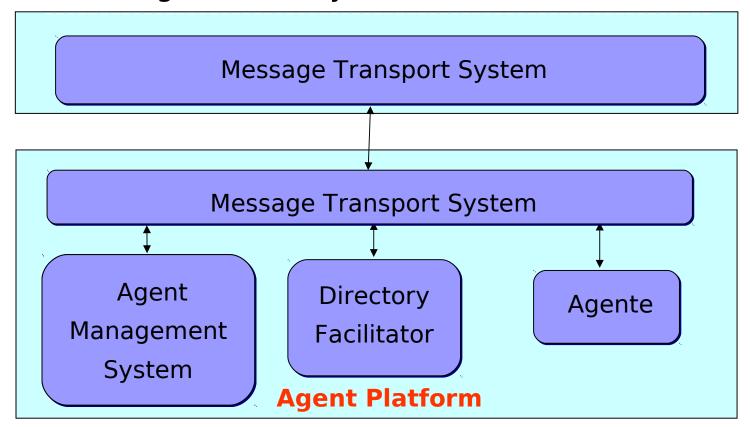
- Inferior: método de interconexión
 - Comunicación física y de protocolos básicos (p.ej. TCP/IP)
- Medio: formato de la información
 - Sintaxis: Estándar KQML, FIPA ACL
 - Actos de habla (tell, ask, deny, perform, ...)
 - Implementaciones (JAT, LALO, ...)
- Superior: significado de la información
 - Semántica: KIF, Ontologías
 - Clases estándares, reutilización
 - Ontolingua

- Nivel Inferior: mecanismo de transporte
 - Los mensajes deben poder ser:
 - Planificables o servidos por eventos
 - Síncronos o asíncronos
 - Direcciones físicas o por rol
 - Unicast / multicast / broadcast
 - Implementaciones
 - CORBA, Common Object Request Broker Architecture
 - RMI, Remote Method Invocation
 - DCOM, Distributed Component Object Model

- <u>Nivel Medio</u>: Lenguaje de Comunicación
 - Debe tener sintaxis bien definida
 - Semántica formal
 - Implementaciones
 - KQML
 - FIPA ACL
 - Basada en XML

- Nivel Superior: Ontologías
 - Problemática
 - Diferentes términos para un mismo concepto
 - El mismo término para diferentes conceptos
 - Diferentes sistemas de clases
 - Ontología común para representar el conocimiento de distintos universos de discurso
 - Implementaciones
 - OIL
 - Ontolingua
 - KIF, Knowledge Interchange Format
 - RDF / Esquemas XML / DTD

1 Sistemas Multiagentes


- 1. Introducción
- 2. Comunicación entre agentes
- 3. Plataformas: FIPA
- 4. Aplicaciones
- 5. JADE

- Foundation for Intelligent Physical Agents
- Consorcio industrial fundado en 1996
- http://www.fipa.org
- Objetivos
 - Acelerar el desarrollo de tecnologías de agentes inteligentes mediante la producción de especificaciones acordadas internacionalmente
 - Especificación del comportamiento y capacidades externas de subsistemas genéricos: recursos de agentes (para migración, ejecución, etc.), interacción y cognitivos
 - Agentes, multi-agentes, y sociedades de agentes
 - Selección y adaptación de tecnologías existentes

 Agent platform: Determina las bases de la infraestructura en la cual se pueden desarrollar y utilizar agentes. Hw y Sw.

Plataforma FIPA: AMS

- Agent Management System
- Elemento de gestión principal
 - Estado de la plataforma
 - Estado de los ags. de la plataforma
- Servicios que ofrece
 - Creación, destrucción y control del cambio de estado de los agentes.
 - Supervisar los permisos para que nuevos agentes se registren (AID válidos).
 - Control de la movilidad de los agentes.
 - Gestión de los recursos compartidos.
 - Gestión del canal de comunicación.
 - Servicio de Nombres (ANS) o Páginas Blancas (Nombre Dirección)

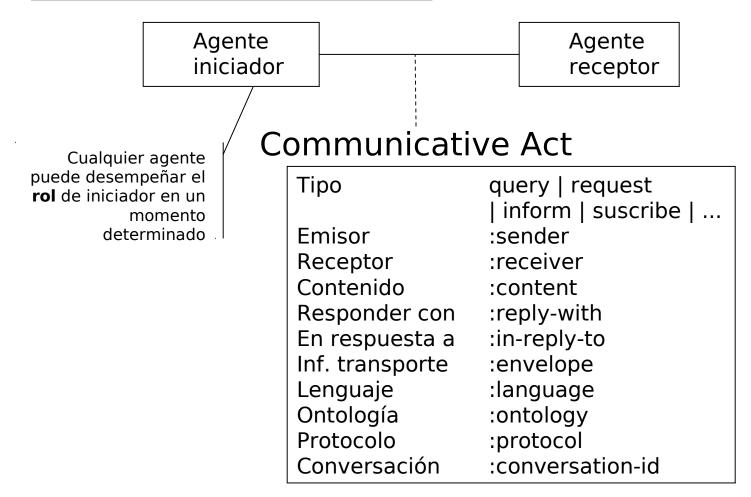
Plataforma FIPA: DF

- Directory Facilitator
- Servicio de Páginas Amarillas
- Servicios que ofrece
 - Los agentes se registran indicando los servicios que ofrecen
 - Agente pregunta por un servicio
 - Resultado: agentes que lo ofrecen

Plataforma FIPA: MTS

- Message Transport System
- Infraestructura de comunicaciones que permite que dos agentes se comuniquen
- Servicios que ofrece
 - Envío de mensajes entre agentes de la misma o distinta plataforma.

- Modelo de Comunicaciones
- Las especificaciones FIPA de comunicación entre agentes tratan con:
 - Mensajes ACL (Agent Communication Language)
 - Protocolos de intercambio de mensajes (actos comunicativos basados en los actos del habla)
 - Representaciones de Lenguajes de contenidos



Modelo de Comunicaciones: Ejemplo de mensaje

```
(request
 :sender an-agent
 :receiver df-agent
 :content
  (action an-agent
   (search
     (:df-agent-description
      (:services
       (:service-type email)))))
 :language SL0
 :ontology fipa-agent-management
 :protocol FIPA-request
```


Modelo de Comunicaciones

- Actos Comunicativos
- FIPA Communicative Act Library Specification
- http://www.fipa.org/specs/fipa00037/SC00037J.pdf
- La interoperabilidad se consigue mediante un lenguaje de comunicación de agentes
 - bien definido
 - sin ambigüedades
 - con un aparato formal sólido
- La base de un ACL está compuesta por los actos comunicativos

Plataforma FIPA: Actos Comunicativos (AC)

- Cada uno de las directivas FIPA está definida mediante:
 - el <u>resumen</u> en donde se explica resumido el significado del mensaje
 - el <u>contenido</u> del mensaje en donde se detalla qué tipo de contenido debe llevar
 - la <u>descripción</u> que es una explicación detallada del acto comunicativo
 - el <u>modelo formal</u> que es una descripción en SL (Semantic Language) que define estados *mentales*
 - un ejemplo de mensaje con el acto comunicativo

- Notación para la definición de un AC
- Un modelo de acto comunicativo (AC) se representará como sigue:

```
< i, act(j, C ) >,
FP: φ1
RE: φ2
```

- donde i es el agente que ejecuta el AC, j es el receptor, act es el nombre de la performativa, C se refiere al contenido del mensaje y φ1 y φ2 son proposiciones lógicas.
- FP (Feasibility Preconditions): Precondiciones
- RE (Rational Effect): Efecto Racional
- El mensaje será:

```
(act
:sender i
:receiver j
:content C)
```


- <u>Tipos de Actos Comunicativos</u>
 - Información
 - Realización
 - Negociación
 - Intermediación

Plataforma FIPA: Actos comunicativos (AC)

- Tipos de Actos Comunicativos: <u>Información</u>
- Emisor: <u>SOLICITA</u> información
 - query-if:
 - Pide a otro agente si una proposición dada es verdadera.
 - query-ref:
 - Pide a otro agente por el objeto referido por una expresión referencial.
 - subscribe:
 - Pide ser notificado por el remitente por valor de una referencia, y ser notificado de nuevo cada vez que el objeto identificado por referencia cambia.

Plataforma FIPA: Actos comunicativos (AC)

- Tipos de Actos Comunicativos: <u>Información</u>
- Emisor: <u>OFRECE</u> información (1)
 - inform
 - El emisor informa al receptor de que una proposición dada es verdadera.
 - confirm
 - El remitente informa al receptor de que una proposición dada es verdadera, cuando es conocido que el receptor no está seguro acerca de la proposición.
 - disconfirm
 - El emisor informa al receptor que una proposición dada es falsa, cuando es conocido que el receptor cree, o cree que es probable que la proposición sea verdadera.
 - not-understood

- Tipos de Actos Comunicativos: <u>Información</u>
- Emisor: <u>OFRECE</u> información (2)
 - not-understood
 - El agente i informa al receptor j que se ha dado cuenta de que j ha realizado alguna acción, pero que i no entiende lo que acaba de hacer j. Por ejemplo, cuando i no entiende el mensaje que acaba de enviarle j.
 - inform-if (macro)
 - inform-ref (macro)

- Tipos de Actos Comunicativos: <u>Información</u>
- Ejemplo:
 - El agente i pregunta al agente j si j se ha registrado en servidor de dominio d1.

```
(query-if
:sender (agent-identifier :name i)
:receiver (set (agent-identitfier :name j))
:content "((registered (server d1) (agent j)))"
:reply-with r09
...)
```

El agente j responde que no.

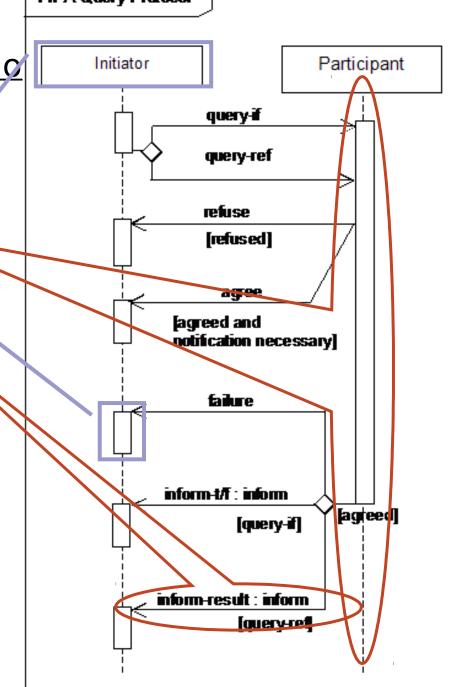
- Tipos de Actos Comunicativos: Realización
- Emisor: Solicita la realización de una acción
 - request
 - El remitente solicita al receptor a realizar alguna acción. Por ejemplo realizar otro acto comunicativo.
 - cancel
 - Un agente informa a otro de que ya no tiene la intención de que realice una determinada acción.
 - request-when
 - El remitente solicita al receptor que realice una acción cuando una proposición sea cierta.
 - request-whenever
 - El remitente solicita al receptor que realice una acción siempre que una proposición sea verdadera.

- Tipos de Actos Comunicativos: Realización
- Emisor: Realiza la acción
 - agree
 - La acción de ponerse de acuerdo para llevar a cabo algún tipo de acción, tal vez en el futuro.
 - refuse
 - La acción de negarse a realizar una acción determinada, y explicar el motivo de la denegación.
 - failure
 - La acción de decirle a otro agente que una acción se intentó, pero el intento fracasó.

- Tipos de Actos Comunicativos: <u>Negociación</u>
- Emisor: Negociar la realización de una acción
 - cfp (call for proposals)
 - La acción de solicitar propuestas para llevar a cabo una acción determinada.
 - accept-proposal
 - Aceptar una propuesta presentada previamente para realizar una acción.
 - reject-proposal
 - La acción de rechazar una propuesta para llevar a cabo algún tipo de acción durante una negociación.
 - propose
 - Presentar una propuesta para llevar a cabo una determinada acción, dadas ciertas condiciones previas.

41

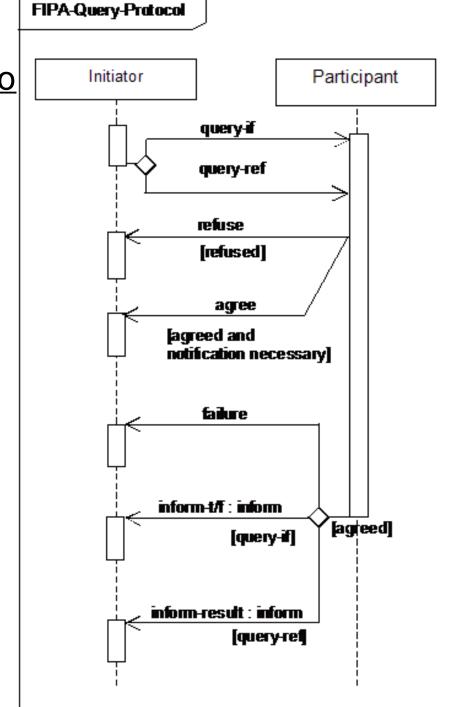
- Tipos de Actos Comunicativos: <u>Intermediación</u>
- Emisor: <u>Intermedia</u> la realización de una acción
 - propagate / proxy
 - El remitente tiene la intención de que el receptor propague el mensaje incrustado a otros agentes indicados por una descripción dada.


PROTOCOLO	Descripción
Request	A un agente se le pide que realice cierta acción
Request when	A un agente se le pide que realice cierta acción siempre que se cumpla la precondición
Query	A un agente se le pide que informe sobre algo
Contract net	Un agente pide la realización de cierta tarea a un conjunto de agentes. Estos dan su propuesta basada en unos costes y el iniciador elige quien la realiza finalmente.
Brokering	Un agente (broker) ofrece las funcionalidades de otros agentes o reenvía las peticiones al agente apropiado
English auction	Varios agentes participan en una subasta que se inicia con el precio más bajo y progresivamente se va subiendo
Dutch auction	Varios agentes participan en una subasta que se inicia con el precio más alto y progresivamente se va bajando
Recruiting	Similar a Brokering pero las respuestas sobre el servicio van directamente al agente que lo necesita (no pasan a través del broker)
Propose	El iniciador propone a una serie de agentes la realización de una tarea y estos aceptan o no.
Subscribe	el agente iniciador pide ser notificado cuando cierta condición sea verdadera

FIPA-Query-Protocol

Plataforma FIPA: Protocolo

Lenguaje AUML:


- roles de los agentes
- Iínea de vida
- hilos de interacción
- mensajes

Plataforma FIPA: Protocolo

FIPA query:

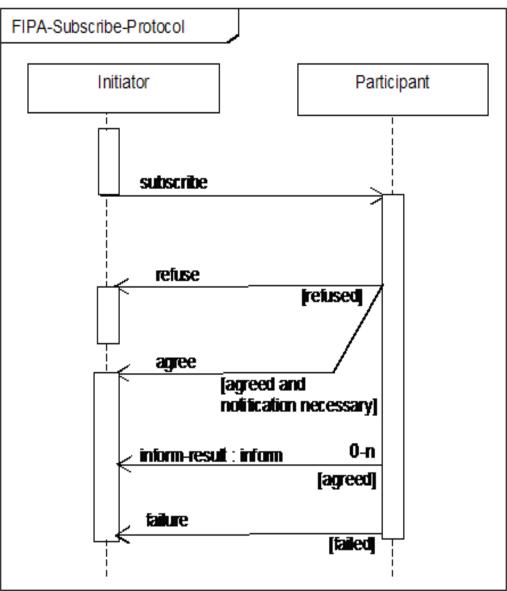
- Un agente pide información
- Dos tipos:
 - query-if: valor de verdad de una proposición
 - query-ref: valor de algún objeto identificado

<u>Plataforma FIPA: Pl FIPA-query</u>

• Ejemplo:

 El agente i pregunta al agente j si j se ha registrado en servidor de dominio d1.

```
(query-if sender (agent-identifier :name i) receiver (set (agent-identitfier :name j)) content "((registered (server d1) (agent j)))" reply-with r09 ...)
```


El agente j responde que no.

```
(inform :sender (agent-identifier :name j) :receiver (set (agent-identifier :name i)) :content "((not (registered (server d1) (agent j))))" :in-reply-to r09)
```

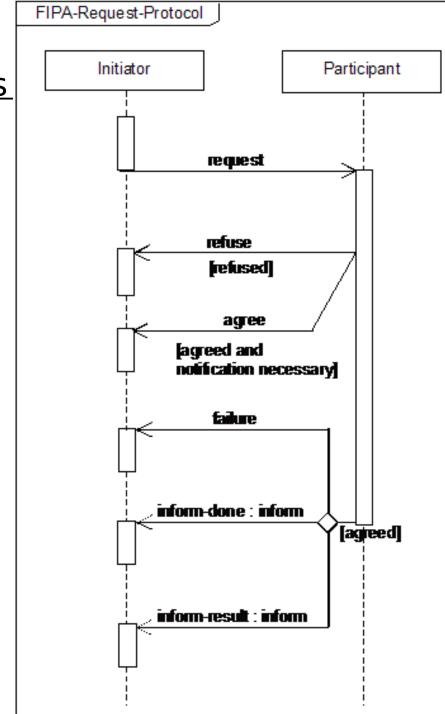

FIPA subscribe:

 el iniciador solicita ser avisado cada vez que se cumpla la condición indicada en el mensaje

Plataforma FIPA: PI FIPA-subscribe

Ejemplo:

 El agente i desea que le informen de los cambios de cotización entre Francos y Dólares, y hace una suscripción con j.


```
(subscribe
  :sender (agent-identifier :name i)
  :receiver
        (set (agent-identifier :name j))
  :content
        "((iota ?x (= ?x (xch-rate FFR USD)))))"
...)
```

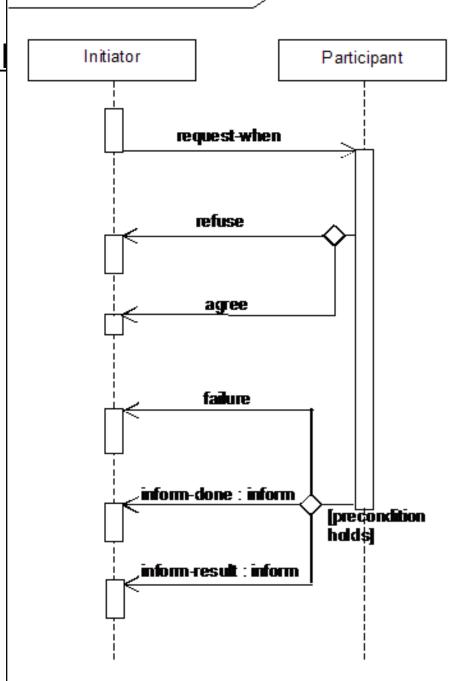
<u>Técnicas Avanzadas de Inteligencia Artificial</u>

Plataforma FIPA: Protocolos

FIPA request:

- Un agente solicita a otro agente que realice una acción.
- El receptor debe indicar su acuerdo y realizarla o responder que rehúsa hacerla.

<u>Plataforma FIPA: Pl FIPA-request</u>

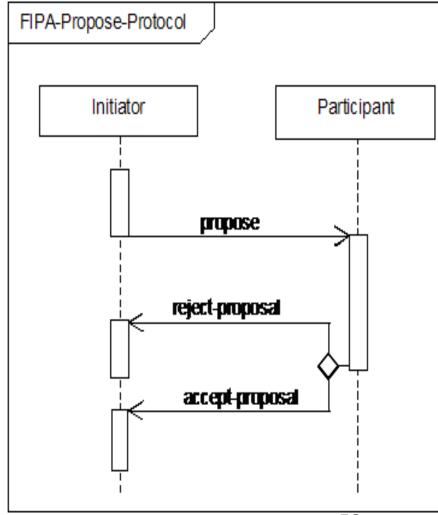

- Ejemplo:
 - El agente i pide a j que abra un fichero

```
(request
  :sender (agent-identifier :name i)
  :receiver (set (agent-identifier :name j))
  :content "open \"db.txt\" for input"
  :language vb)
```

Plataforma FIPA: Protocol

FIPA request-when:

- análogo a FIPA-request.
 El emisor quiere que el receptor realice alguna acción en cuanto se cumpla alguna precondición
- el receptor debe esperar
 a que se cumpla la
 precondición para responder


Ejemplo:

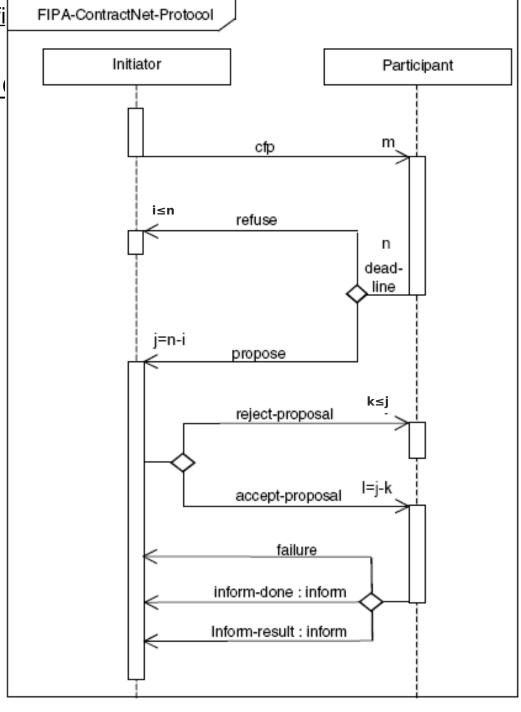
 El agente i pide al agente j que le notifique el salto de una alarma en cuanto ocurra.

FIPA propose:

- el emisor envía un mensaje al participante indicando que él realizará alguna acción si el participante está de acuerdo
- habitualmente, sigue la realización de la acción y la notificación del estado

<u>Plataforma FIPA: Pl FIPA-propose</u>

Ejemplo:


 El agente j propone al agente i vender 50 cajas de ciruelas por 5€

```
(propose
    :sender (agent-identifier :name j)
    :receiver (set (agent-identifier :name i))
    :content
    "((action j (sell plums 50))
        (= (any ?x (and (= (price plum) ?x) (< ?x 10)))
        5)"
    :ontology fruit-market
    :in-reply-to proposal2
    :language fipa-sl)</pre>
```

Plataforma FIPA: Proto

FIPA contract-net:

- un agente desea que se realice una acción
- hay varios candidatos
- se desea minimizar una función que caracteriza la tarea (precio)

FIPA contract-net:

- Inicialmente, el manager, con el rol FIPA de iniciador, genera m mensajes del tipo <u>cfp</u> (call for proposal) y queda a la espera durante un determinado tiempo, después del cual no recibirá más mensajes (un total de n recibidos)
- Sea i el número de mensajes de tipo <u>refuse</u>, Tendremos entonces j = n i mensajes del tipo <u>propose</u>
- Para cada uno de los j mensajes, enviar posteriormente bien un accept-proposal o un reject-proposal
- Se informa del resultado con un <u>failure</u>, con un <u>inform</u> sin resultado o con el mismo acompañado del resultado.

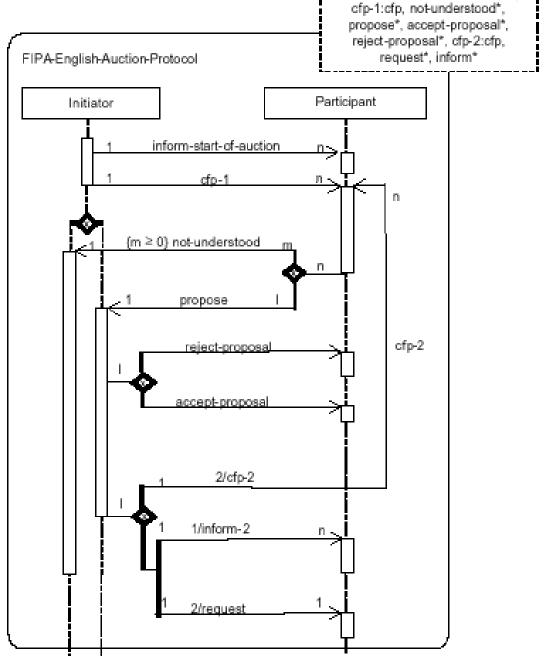
Plataforma FIPA: Protoco

FIPA iterated-contract-net:

- contract-net con varias rondas
- se inicia con una cfp
- cada participante emite su oferta
- el iniciador puede aceptar una, rechazarlas todas, emitir una cfp revisada

FIPA iterated-contract-net:

- Inicialmente, el agente con el rol de iniciador de la conversación genera m mensajes cfp
- Después de un deadline de espera, el iniciador recoge digamos n ofertas
- sean un total de j las que rechazan realizar la tarea mediante refuse
- Tenemos entonces k = n j ofertas de agentes que están dispuestos a realizar la tarea con propose
- Si la iteración no es la ultima, de entre el total de k ofertas recibidas, se rechazarán algunas directamente, k-l, y se aceptarán otras tantas l.
- De entre las aceptadas, se elabora una contraoferta para cada agente y se envuelve en un nuevo cfp



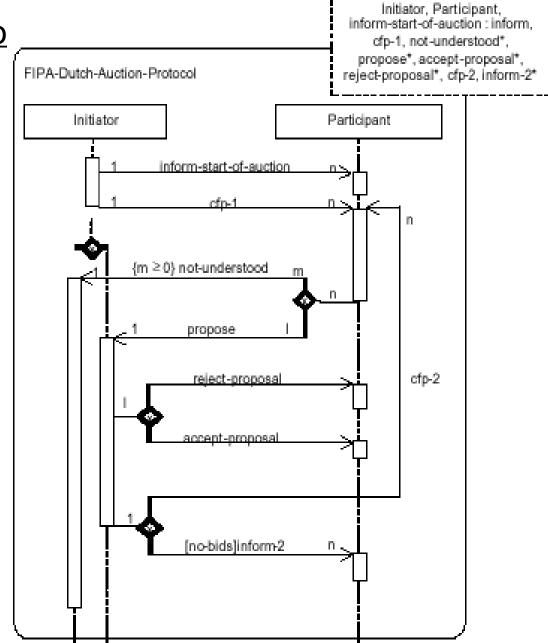
FIPA English auction:

- método de subasta al alza
- cuando se emite una oferta, el iniciador genera un cfp con el nuevo precio
- El subastador busca encontrar el precio de mercado de una mercancía proponiendo un precio inicial inferior al supuesto valor de mercado de manera que el precio se vaya elevando gradualmente.

Plataforma FIPA: Pro

FIPA English auction:

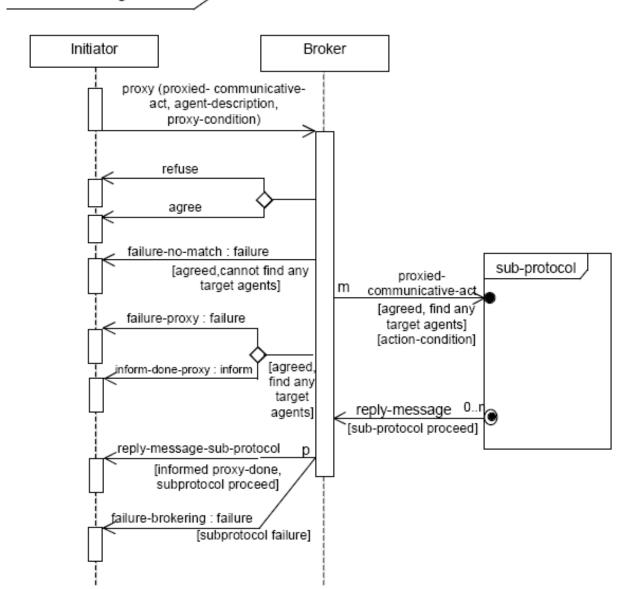
Initiator, Participant, inform-start-of-auction: inform,


FIPA Dutch auction:

- método de subasta a la baja
- suele haber un precio mínimo por debajo del cual no se realiza la venta

Plataforma FIPA: Pro

FIPA Dutch auction:


FIPA brokering:

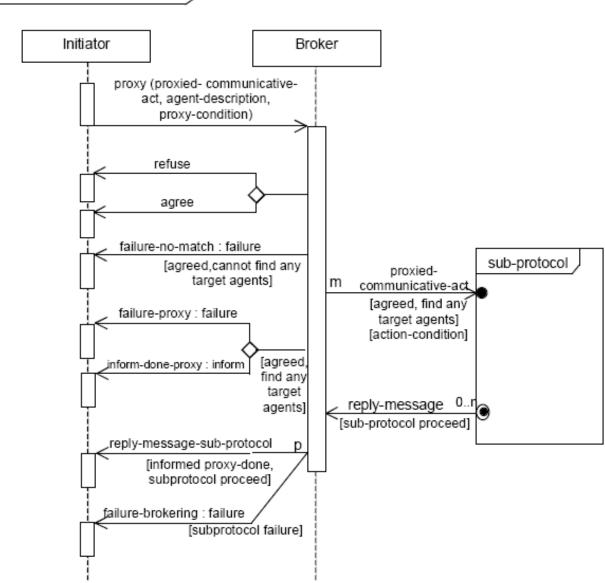
- Diseñado para soportar la intermediación entre agentes
- el broker envía la petición a un conjunto de agentes
- el broker proporciona las respuestas

FIPA-Brokering-Protocol

FIPA brokering:

FIPA brokering:

- Tiene como propósito permitir interaccionar con otros agentes a través de un mediador (el broker)
- <u>proxy</u> es una macro (incluye otro acto comunicativo que el broker debe hacer llegar al seleccionado o seleccionados)
- El broker devuelve los resultados mediante <u>reply-message-sub-protocol</u> (i.e. un <u>reply</u> con la respuesta en el cuerpo del mensaje)


FIPA recruiting:

- análogo a FIPA-brokering
- el broker envía la petición a un conjunto de agentes
- los agentes son quienes envían la respuesta al iniciador

FIPA-Brokering-Protocol

FIPA recruiting:

1 Sistemas Multiagentes

- 1. Introducción
- 2. Comunicación entre agentes
- 3. Plataformas: FIPA
- 4. Aplicaciones
- 5. JADE

Técnicas Avanzadas de Inteligencia Artificial Curso 2013-2014

German Rigau

german.rigau@ehu.es

http://adimen.si.ehu.es/~rigau

Grado en Ingeniería en Informática / Ingeniería en Informática