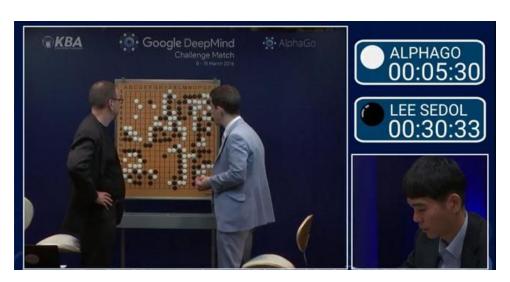
Artificial Intelligence in video games

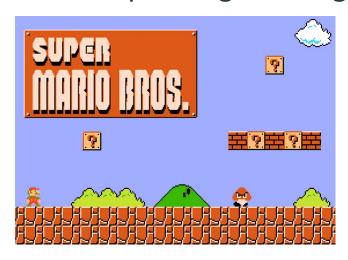
Iker Ortiz and Xabier Lekunberri

Summary


- History of AI in video games
 - Why videogames are so appropriate for Al
 - Why AI fits so well in videogames
- Learning methods / Types of Al
 - Finite State Machines
 - Tree Search
 - Utility-based Al
- Examples

History of Al in video games

- First software that mastered a game by Alexander Douglas (1952).
- Later, chess as "standard".
- First superhuman chess capability the IBM's Deep Blue.
- Other uses of AI very important as well (procedural generation)



- Difficulty and interesting problems of games
 - People usually like games being hard
 - High difficulty encourages to use AI in games.
 - Checkers, Chess, Go...
 - Go: >10^170 states.

Human-Computer Interaction

- Games are one of the better examples of human-computer interaction.
- The range of action that can be done vary depending on the game

Popularity of games

- First introduced as arcades in some few locals
- Nowadays multi-billionaire industry
- Now we can play anywhere and anytime
- More people play
 - More innovative content
- More creative games developed
 - Al will be more creative

- Cover of any AI field by many challenges
 - Many genres → Many types of problems to be solved
 - Go and Arcade games: ML
 - Checkers and Chess: Tree Search
 - Jeopardy!: Knowledge representation, reasoning,
 Natural Language Processing...

Why Al fits so well in videogames

3 most important reasons:

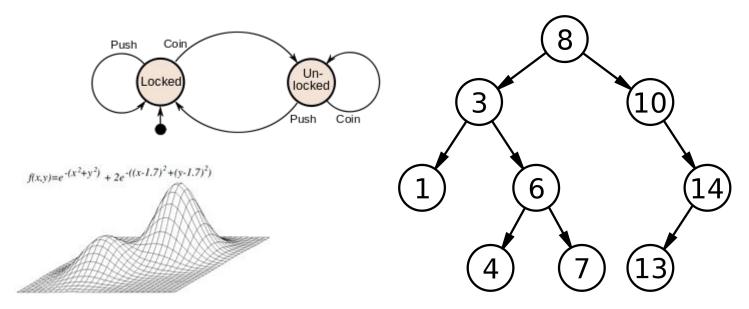
- Al plays and improves the game
 - Any level of AI improves a videogame
 - 2 main goals: play well and play human-like
 - All is capable of controlling player and non-playable
 - characters

Why Al fits so well in videogames

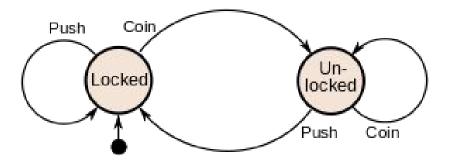
- More content, better content
 - AI helps game designers:
 - Memory usage: Calculating every state is a very heavy task.
 - Content creation: A good AI creates content with diversity, quality and quantity.

Elite (1984)

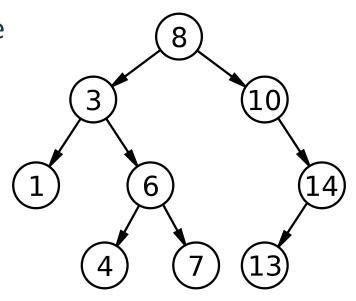
No Man's Sky (2016)


Why Al fits so well in videogames

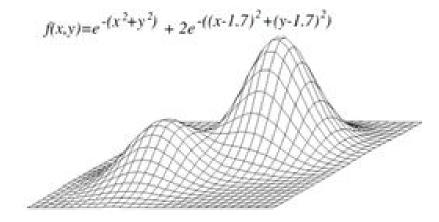
- Player experience and behavioral data analysis
 - Analyse the data from the player and game
 - Tailor the experience to each player
 - Speed up game design → whole game production
 - Game designed with AI → Good game


Learning methods / Types of Al

3 popular class of AI methods for game development.
 Finite state machines, behavior trees and utility-based
 AI


Finite State Machines

- Dominated processes of AI in games until the mid-2000s.
- Very simple to design, implement and visualize.
- After their design there is limited room for adaptivity and evolution.


Tree Search

- The strength compared to FSM is their modularity.
 However, they have same problems
- From root to children.
- Trees are composed of three node types.
 - Sequence.
 - Selector.
 - Decorator.

Utility-based Al

- Utility is a measure of the "goodness" of a choice.
- Can be viewed as a function to decide which path to take.
- Heuristics.
- Three most known types.
 - Hill climbing.
 - Beam search.
 - Best first.

Examples

- Marl/O: A program that learns to play Super Mario World. (0:00 - 2:00)
 - https://www.youtube.com/watch?v=qv6UVOQ0F44
- TensorKart: A program that learns to drive in Mario Kart. (0:00 - 1:20)
 - https://www.youtube.com/watch?v=vrccd3yeXnc