

Techniques​ ​and​ ​Algorithms​ ​in​ ​Video
Game​ ​AI​ ​Developing

Advanced​ ​Techniques​ ​in​ ​AI

Walid​ ​Boussaboun
Imanol​ ​Gomez

October​ ​18,​ ​2017

Abstract: This document explains three techniques used in video games in order to allow
non-human agents to react to their virtual environment. These techniques are pathfinding,
which allows the agents to trace and follow a route from two positions, flocking, which allows
agents to group and share a space as well as move in groups in a realistic way, and dead
reckoning, which allows real time network games to be played without noticing network
latencies.

Introduction 3

Pathfinding 4
Background 4
Use​ ​in​ ​video​ ​games 4
Related​ ​Techniques 5
Examples 5

Flocking 6
Rules 6
Background 7
Algorithm 7
Implementations 8

Dead​ ​Reckoning 9
Background 9
Algorithm 9

Conclusions 11

References 12
General​ ​Ideas 12
Pathfinding 12
Dead​ ​Reckoning 12
Flocking 12

Introduction
As everybody knows, video game industry is one of the most important industries nowadays.
The first modern video games were created around the 1960s, and they were incredibly
simple. As time went by, people created better computers, better algorithms, learnt new
techniques and improved artificial intelligence. Thanks to this process, we could say that
today’s games agents have “intelligence”, because they take decisions based on external
information,​ ​and​ ​they​ ​do​ ​not​ ​act​ ​randomly,​ ​as​ ​they​ ​used​ ​to​ ​do​ ​in​ ​the​ ​past.

Also, video games have become more complicated to program, they needed more
programmers working on them and also more time to be completed. On the other hand, they
became more fun, they started to offer more challenges to players, and can be enjoyed by
more​ ​people​ ​than​ ​before.

Video game industry will continue growing, that is a fact, and algorithms and techniques
used in games agents will improve too. Taking this into account, we can see the importance
of creating efficient algorithms that will be used by virtual agents, so they can give a better
game​ ​experience​ ​to​ ​future​ ​players.

We liked video games and we played them since our childhood, so we decided to do a work
related​ ​to​ ​them.

We are coursing the Advanced Techniques in AI subject which is about Intelligent Agents,
how do they work, which algorithms and logic do they use, what kind of Agents exist, etc…
So, according to what we have seen in class and our passion for video games, we decided
to do a work based on the three most used algorithms or techniques in video games by
agents.

Pathfinding

Background
This algorithm is one of the most used algorithms in video games and it consists in finding
the shortest route between two points. It is heavily based on Dijkstra's algorithm for finding
the​ ​shortest​ ​path​ ​on​ ​a​ ​weighted​ ​graph,​ ​as​ ​seen​ ​in​ ​subjects​ ​in​ ​the​ ​Computer​ ​Science​ ​career.

Use​ ​in​ ​video​ ​games
In video games, this algorithm is frequently used in the NPCs (agents), and it’s purpose is to
achieve that each NPC is able to go from ​its current location to ​its target location ​avoiding
other NPCs and obstacles in the path. It also takes into account ​a cost function to take the
best path, in other words, if more than one possibilities were available from going to point A
to​ ​point​ ​B,​ ​the​ ​algorithm​ ​would​ ​choose​ ​the​ ​more​ ​optimal​ ​one​ ​(usually​ ​this​ ​is​ ​the​ ​fastest​ ​one).

Here​ ​we​ ​can​ ​see​ ​a​ ​very​ ​good​ ​example​ ​on​ ​how​ ​this​ ​works​ ​in​ ​a​ ​common​ ​strategy​ ​game:

Figure​ ​1:​ ​Screenshot​ ​of​ ​Warcraft​ ​III.

In this type of games, there is a huge map to explore, and we can choose one unit or a
number of troops to go wherever we want selecting the troops and clicking in the point where
we want them go to. As we can see in ​Figure 1​, the map has several routes to travel
between cities without entering in the forest. These routes are used by NPCs to travel
between points automatically, and they act like edges in a graph, and the little forest clears
which joins different routes act like nodes. So, if we want our troops to go from point A to

point B, and this implies a long way that contains many routes and forest clears, they will
automatically​ ​choose​ ​the​ ​fastest​ ​way.

Here​ ​we​ ​can​ ​see​ ​some​ ​nodes​ ​in​ ​red​ ​and​ ​routes​ ​in​ ​blue​ ​of​ ​the​ ​map​ ​of​ ​the​ ​game​ ​above:

Figure​ ​2:​ ​Graph​ ​made​ ​based​ ​on​ ​the​ ​map.

Related​ ​Techniques
But, how do the NPCs know which areas are able to pass pass through, and which areas
are not? (like rivers, for example). All the map is covered by invisible meshes called
“​Navigation Meshes” ​and thanks to them, NPCs recognize the different areas in the map and
how​ ​they​ ​can​ ​interact​ ​with​ ​them.

For example, in a FPS (First Person Shooter), the Navigation Meshes show where can the
NPCs (in this case soldiers) make some actions, such as, walk in the street, take cover from
the​ ​enemy​ ​fire​ ​behind​ ​a​ ​car,​ ​climb​ ​up​ ​some​ ​stairs,​ ​etc.

Examples
Assassins​ ​Creed​ ​NPCs​ ​walking:​ ​​https://www.youtube.com/watch?v=U8-BCm-lrcI

https://www.youtube.com/watch?v=U8-BCm-lrcI

Flocking
Flocking is the collective motion of a large number of self-propelled entities. Interaction
between simple behaviors of individuals produce complex yet organized group behavior. The
component behaviors are inherently nonlinear, so mixing them gives the emergent group
dynamics a chaotic aspect (unpredictability), since the position and movement of an entity
cannot be predicted in long amounts of time. At the same time, the negative feedback
provided by the behavioral controllers tends to keep the group dynamics ordered. The result
is​ ​​life-like​​ ​group​ ​behavior.

Rules
Basic​ ​models​ ​of​ ​flocking​ ​behavior​ ​are​ ​controlled​ ​by​ ​three​ ​simple​ ​rules:

1. Separation​ ​-​ ​avoid​ ​crowding​ ​neighbors​ ​(short​ ​range​ ​repulsion).

Figure​ ​3:​ ​separation.

2. Alignment​ ​-​ ​steer​ ​towards​ ​average​ ​heading​ ​of​ ​neighbors.

Figure​ ​4:​ ​Alignment.

3. Cohesion​ ​-​ ​steer​ ​towards​ ​average​ ​position​ ​of​ ​neighbors​ ​(long​ ​range​ ​attraction).

Figure​ ​5:​ ​Cohesion.

With these three simple rules, the flock moves in an extremely realistic way, creating
complex​ ​motion​ ​and​ ​interaction​ ​that​ ​would​ ​be​ ​extremely​ ​hard​ ​to​ ​create​ ​otherwise.

Background
In 1986 Craig Reynolds made a computer model of coordinated animal motion such as bird
flocks and fish schools. It was based on three dimensional computational geometry of the
sort normally used in computer animation or computer aided design. Craig Reynolds called
the​ ​generic​ ​simulated​ ​flocking​ ​creatures​ ​boids.​ ​[Craig​ ​Reynolds]

Algorithm
Straightforward implementation of the boids algorithm has an asymptotic complexity of

O(n​2​). Each boid needs to consider each other boid, if only to determine if it is not a ​nearby
flockmate. However it is possible to reduce this cost down to nearly O(n) by the use of a
suitable ​spatial data structure which allows the boids to be kept sorted by their location.
Finding the nearby flockmates of a given boid then requires examining only the portion of the
flock​ ​which​ ​is​ ​within​ ​the​ ​general​ ​vicinity.
A way to implement the second algorithm is using, for example, bin-lattice spatial
subdivision. In bin-lattice spatial subdivision, a box-shaped region of space is divided into a
collection of smaller boxes called "bins". For simplicity the edges of the big box, and the
dividing planes which form the faces of the smaller boxes are all aligned with the global
axes. At the beginning of the simulation, characters are distributed into bins based on their
initial position. Each time they move they check to see if they have crossed into a new bin,
and if so, update their bin membership. The big box is selected to surround the area of
interest (in this case, the meadow in the pigeon’s park). The number of subdivisions along
each axis is selected to provide a good tradeoff between more precise localization of
characters​ ​and​ ​less​ ​bin​ ​switching​ ​overhead​ ​as​ ​characters​ ​move.

Figure​ ​6:​ ​Bin-lattice​ ​spatial​ ​subdivision.

Implementations
First​ ​implementation​ ​in​ ​Symbolics​ ​Common​ ​Lisp:​ ​​http://www.red3d.com/cwr/code/boids.lisp
[Craig​ ​Reynolds]

http://www.red3d.com/cwr/code/boids.lisp

Dead​ ​Reckoning
Dead reckoning is the process of calculating one's current position by using a previously
determined position, or fix, and advancing that position based upon known or estimated
speeds​ ​over​ ​elapsed​ ​time​ ​and​ ​course.

Figure​ ​7:​ ​Example​ ​of​ ​Dead​ ​Reckoning,​ ​where​ ​we​ ​see​ ​the​ ​differences​ ​while​ ​having​ ​data​ ​sent
over​ ​the​ ​network​ ​with​ ​low​ ​frequency.

Background

Networked games and simulation tools routinely use dead reckoning to predict where an
actor should be right now, using its last known kinematic state (position, velocity,
acceleration, orientation, and angular velocity).This is primarily needed because it is
impractical​ ​to​ ​send​ ​network​ ​updates​ ​at​ ​the​ ​rate​ ​that​ ​most​ ​games​ ​run,​ ​60 Hz.

Algorithm
The​ ​basic​ ​solution​ ​starts​ ​by​ ​projecting​ ​into​ ​the​ ​future​ ​using​ ​linear​ ​physics:

1. Updates​ ​position​ ​with​ ​the​ ​new​ ​position.
2. Extrapolates​ ​the​ ​position​ ​based​ ​on​ ​the​ ​current​ ​position​ ​and​ ​the​ ​speed.
3. Extrapolates​ ​the​ ​position​ ​using​ ​the​ ​current​ ​position,​ ​speed​ ​and​ ​acceleration.

This formula is used to move the object until a new update is received over the network. At
that point, the problem is that there are now two kinematic states: the currently estimated
position and the just received, actual position. Resolving these two states in a believable
way can be quite complex. One approach is to create a curve (ex cubic Bézier splines,
centripetal Catmull–Rom splines, and Hermite curves) between the two states while still
projecting into the future. Another technique is to use projective velocity blending, which is

the blending of two projections (last known and current) where the current projection uses a
blending​ ​between​ ​the​ ​last​ ​known​ ​and​ ​current​ ​velocity​ ​over​ ​a​ ​set​ ​time.

This allows smoother game experience as it deals with latency related problems in network
games.​ ​[Wei​ ​Shi,​ ​Jean-Pierre​ ​Corriveau,​ ​and​ ​Jacob​ ​Agar]

Conclusions
This report has approached 3 of the main techniques used in agents in video games. It
describes the different techniques (pathfinding, flocking and dead reckoning), as well as
present and explain the algorithms used to implement these, since they solve common
problems​ ​that​ ​programmers​ ​face​ ​when​ ​programming​ ​AI​ ​for​ ​video​ ​games.

References

General​ ​Ideas
https://prezi.com/sqx5t9bvaznb/agentes-inteligentes-en-los-videojuegos/​​ ​[Gabriel​ ​Lara]

Pathfinding
https://en.wikipedia.org/wiki/Pathfinding​​ ​​ ​[Wikipedia]
https://visstaralax.wordpress.com/2014/01/27/capitulo-12-mallas-de-navegacion/
[​visstaralax​]
https://www.youtube.com/watch?v=TD5BGZ-W4-0​​ ​[euskopokalipsis]

Dead​ ​Reckoning
https://www.gamasutra.com/view/feature/131638/dead_reckoning_latency_hiding_for_.php
[Jesse​ ​Aronson]
https://www.hindawi.com/journals/ijcgt/2014/138596/​​ ​[Wei​ ​Shi,​ ​Jean-Pierre​ ​Corriveau,​ ​and
Jacob​ ​Agar]
https://en.wikipedia.org/wiki/Dead_reckoning#Autonomous_navigation_in_robotics
[Wikipedia]

Flocking
https://en.wikipedia.org/wiki/Flocking_(behavior)​​ ​[Wikipedia]
https://geeks.ms/jbosch/2009/10/26/xna-flocking-o-movimientos-colectivos​​ ​[Jesús​ ​Bosch]
http://www.red3d.com/cwr/boids/​ ​​[Craig​ ​Reynolds]
http://www.red3d.com/cwr/papers/2000/pip.pdf​​ ​[Craig​ ​Reynolds]

https://prezi.com/sqx5t9bvaznb/agentes-inteligentes-en-los-videojuegos/
https://en.wikipedia.org/wiki/Pathfinding
https://visstaralax.wordpress.com/2014/01/27/capitulo-12-mallas-de-navegacion/
https://www.youtube.com/watch?v=TD5BGZ-W4-0
https://www.gamasutra.com/view/feature/131638/dead_reckoning_latency_hiding_for_.php
https://www.hindawi.com/journals/ijcgt/2014/138596/
https://en.wikipedia.org/wiki/Dead_reckoning#Autonomous_navigation_in_robotics
https://en.wikipedia.org/wiki/Flocking_(behavior)
https://geeks.ms/jbosch/2009/10/26/xna-flocking-o-movimientos-colectivos
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/papers/2000/pip.pdf
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/

