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Abstract 

This document introduces the investigation that DeepMind has done based on 

the StarCraft II game. This is a multi-agent problem with multiple players 

interacting; there is imperfect information due to a partially observed map; it has 

a large action space involving the selection and control of hundreds of units; it 

has a large state space that must be observed solely from raw input feature 

planes; and it has delayed credit assignment requiring long-term strategies over 

thousands of steps. They have provide an open source Python-based interface 

for communicating with the game engine. In addition to the main game maps, 

they have provide a suite of mini-games focusing on different elements of 

StarCraft II gameplay.  Finally, we present the reinforcement learning, which is 

the method they have used to do the investigation. 

 

1. Introduction 
First of all, is important to know what is StarCraft II. It is a real-time strategy game developed 

by Blizzard in which players need to build armies and vie in order to control the battlefield. 

The armies can be as small as we want, and the player have to command their armies in 

real time. Strategic thinking is key to success: we need to gather information about our 

opponents in order to anticipate their moves and formulate a winning strategy.   

 

2. About their work 
What DeepMind wants to do is to push the boundaries of artificial intelligence (AI), 

developing programs that can learn to solve any complex problem without needing to be told 

how. Computer games are perfect to do this. They provide a compelling solution to the issue 

of evaluating and comparing different learning and planning approaches on standardised 

tasks, and is an important source of challenges for research in AI. Besides, they are 

externally defined to be difficult and interesting for a human to play. This ensures that the 

challenge itself is not tuned by the researcher to make the problem easier for the algorithms 

being developed; and in some cases a pool of avid human players exists, making it possible 

to benchmark against highly skilled individuals. In summary, games are perfect to do this 



because they allow us to develop and test smarter, and provide us instant feedback on how 

we’re doing through scores. 

 

In 2015, DeepMind created a Go program called Alpha-Go which beat the world champion in 

a 3 game match two years later of its creation. Now, they are disbanding the team that 

worked on the game while continuing AI research in other areas, such as StarCraft II. 

 

3. Processes of the investigation 
StarCraft II is a very complex game. Compared to chess or Atari games, in StarCraft II we 

don’t have all the information we need to make our best possible movement, it’s an imperfect 

information game. So, in order to make a better investigation, they divided the game in 

several mini-games.  

 
These are focused scenarios on small maps that have been constructed with the purpose of 
testing a subset of actions or game mechanics with a clear reward structure. They have 
initially made seven mini-games: 

 

 
Figure 1. Here we’ve got some examples of the mini-games they have created. An 
example of these games are shown in the following link. In total, there are seven initial mini 
games designed by DeepMind, but programmers have resources to make new ones to see 
their agent’s behavior. https://www.youtube.com/watch?v=6L448yg0Sm0&feature=youtu.be 

 

 MoveToBeacon: The agent has a single marine that gets +1  in its score each time it 
reaches a beacon.  

 CollectMineralShards: The agent starts with two marines and must select and move 
them to pick up mineral shards, which are around the map. 

 FindAndDefeatZerglings: The agent starts with 3 marines and must explore a map to 
find and defeat individual Zerglings.  

 DefeatRoaches: The agent starts with 9 marines and must defeat 4 roaches. Every 
time it defeats all of the roaches it gets 5 more marines as reinforcements and 4 new 
roaches spawn. The reward is +10 per roach killed and -1 per marine killed.  

https://www.youtube.com/watch?v=6L448yg0Sm0&feature=youtu.be


 DefeatZerglingsAndBanelings: The same as DefeatRoaches, except the opponent 
has Zerglings and Banelings, which give +5 reward each when killed. This requires a 
different strategy because the enemy units have different abilities. 

 CollectMineralsAndGas: The agent starts with a limited base and is rewarded for the 
total resources collected in a limited time. 

 BuildMarines: The agent starts with a limited base and is rewarded for building 
marines. It must build workers, collect resources, build Supply Depots, build 
Barracks, and then train marines.  

 
To do all of this, they are using an environment, SC2LE, which is composed by three sub-
components: a Linux StarCraft II binary, the StarCraft II API, and PySC2. They use the API 
to start a game, get observations, take actions, and review replays. Using this API they have 
built PySC2, which is a Python environment that helps the StarCraft II API to facilitate the 
interaction between Python reinforcement learning agents and StarCraft II. 

 

4. Observating the environment 
StarCraft II uses a game engine which renders graphics in 3D, but, instead of using those 
3D rendered graphics, the StarCraft II API generates a set of “feature-layers”, which abstract 
away from the RGB images seen during human play and, still, maintain the core spatial and 
graphical concepts of StarCraft II (see Figure 2). 

 

 
Figure 2. Here we’ve got the API they have made. We can see a human interpretable view of the 
game on the left, and coloured versions of the feature layers on the right. More examples in  
https://www.youtube.com/watch?v=-fKUyT14G-8&feature=youtu.be 

 
Each of these layers represents something specific in the game, which can represent the 
minimap or the screen. Some of these (e.g., hit points, height map) are scalars, while others 
(e.g., visibility, unit type, owner) are categorical. Apart from those, there are also various 
non-spatial observations that the human interface provides and are relevant for the agent, 
such as minerals and gas quantity. 
 
To simplify measures, the screen is rendered with a top down ortographic projection, which 
is scaled into a N x N pixel map (being N = 64, in this case). So, as the reader may think, 
there are an uncountable amount of different states in the game, and it is infeasible to 
precompute all the best possible actions for each different state.   

https://www.youtube.com/watch?v=6L448yg0Sm0&feature=youtu.be
https://www.youtube.com/watch?v=-fKUyT14G-8&feature=youtu.be


5. Action pool 
StarCraft II is not a simple game, that is true. In order to represent the full action space we 

define approximately 300 action-function identifiers with 13 possible types of arguments. In 

StarCraft II, not all the actions are available in every game state. For example, the move 

command is only available if a unit is selected. 

 
As you can see in Figure 2, there is a list of available actions to be taken in that specific 
state (those actions can be read on the left side of the image, in yellow). 
 
We could formally represent all actions as a composition of a function identifier a0 and a 
sequence of L arguments which that function identifier requires: a1,a2,...,aL. You can see an 
example here (Figure 3): 

 

 
Figure 3. This is an example of the function (a0) that selects units drawing a 
rectangle with the mouse. The first argument (a1) is a binary argument which 
decides if the new selected units are going to be added with the previously 
selected units. The last two parameters (a2 and a3) are pixel coordinates that 
defines the rectangle on the screen.   

 

Humans typically make between 30 and 300 actions per minute (APM), roughly increasing 

with player skill, with professional players often spiking above 500 APM. This means that the 

agent must decide which action to choose as fast as possible (and as good as possible too). 

In Figure 4, the reader will be able to see the difference between how actions are made by a 

human and an agent. 

 



 
Figure 4. Human and agent actions can be compared in this figure. The action 
space were designed to be as close as possible to human actions. In the last row, 
we can see a simplified version of the list of available actions. Note that the first two 
columns ‘build supply’ action isn’t in the list, because a worker has to be selected 
first. 

 

 

6. Reinforcement Learning: Baseline Agents 
Now that we know how the agent can observe the environment and how would be able to 

make some actions depending of its surroundings, the question is, how do they learn what to 

do in each specific scenario? Reinforcement learning may be the answer. 

 

At the core of DeepMind’s team’s reinforcement learning agents sits a deep neural network 

with parameters θ, which defines a policy πθ. At time step t, the agent receives observations 

st, selects an action at with probability πθ (at|st), and then receives a reward rt from the 

environment. The goal of the agent is to maximise the return Gt, where γ is a discount factor 

(whose values are between 0 and 1). 

 

 
  

In this case, DeepMind uses Asynchronous Advantage Actor Critic (A3C) in order to learn 

the parameters θ, which has shown to produce state-of-the-art results on some mini-games. 

 

As it is said before, the API exposes actions as a nested list a which contains a function 

identifier a0 and a set of arguments. Since all arguments including pixel coordinates on 

screen and minimap are discrete, a naive parametrization of a policy π(a|s) would require 

millions of values to specify the joint distribution over a, even for a low spatial resolution. 

Using a chain rule such as the next one can be a solution. 

 



 
This representation, if implemented efficiently, is arguably simpler as it transforms the 

problem of choosing a full action a to a sequence of decisions for each argument al. 

 

Decisions about where to click on a screen naturally depend on the purpose of the click. So, 

the idea is to first decide for the function identifier, then all categorical arguments and, finally, 

if relevant, pixel coordinates. 

 

7. Mini Game results  
As the full game results were really bad and the agents aren’t able to keep logical strategies 

as a human would make, one can avoid the complexity of the full game by defining a set of 

minigames which focus on certain aspects of the game. 

 

Although many agent architectures are used, we aren’t going to make any distinctions about 

their own results and we are going to analyze all of them as equal agent (as we only want to 

see what are they capable of). 

 

 
Table 1. This is a table in which the average and max score of both 
human players and artificial agents are compared. We can see some 
different agent architectures, but, overall, an agent’s performances is 
decreased as the strategic difficulty of the mini game increases.  



 

In table1 we can see the results of two real people in those mini games (one being an 

amateur and the other one a grand master) as well as the agent’s scores. Strategically 

speaking, the easiest one is “Move to Beacon”, which mainly precise of good mechanics and 

reaction. This is the unique mini game in which the agents beat the humans. 

 

Mini games that require to collect resources are a little bit more difficult for the agents and 

they normally get a worse score than both the amateur and professional human beings. 

 

Mini games that are focused on combat strategy are better managed by these agents, and in 

some cases, they reach the level of an amateur player. But, when a mini game is more 

strategically demanding like “Build Marines”,  the agents aren’t able to apply some logic as a 

human would be able to and they get really bad scores.  This demonstrates that even 

relatively simple mini-games present interesting challenges, which we hope will inspire new 

research. 

 

8. Final conclusion 
In StarCraft II, mini games are primarily unit-tests which the agent must beat in order to 

succeed on the full game. As we can see in the results, this goal seems to be still far away, 

and a lot of research needs to be done if we want to see a decent agent.  

 

These new technologies that are being investigated (such as deep learning and 

reinforcement learning), seems to be the key to a world full of intelligent agents that will ease 

our lives, and it is essential to invest a lot of efforts in this area if we want to see that 

becoming true. 

 

As far as we are concerned, the Real Time Strategy game called StarCraft looks like a very 

good way to test our agent’s capacity to learn and reconsider new thoughts and strategies.  
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