
(Deep) Reinforcement
Learning

Edu Vallejo, Miguel Ángel Gil, Pablo Felipe y Xabier
Ugarte

What is RL?

● RL: Applying machine learning techniques to automatically learn agents that do well (with respect to
some metric) in an environment by optimizing for some objective function in the space of agent
policies.

● Deep RL: augmenting the RL field with Deep Learning concepts.
○ deep architectures
○ methods to train the architectures

AI agents 101
● Environment

○ State space
○ State transition function

● Agent
○ Observation space
○ Action space
○ Knowledge base

■ Internal representation
■ Update functions

○ Policy
■ Internal representation

● Objective
○ Utility function
○ Fitness function

Machine Learning in action
We have a measure of the “goodness” of the policy and we have defined a space of valid policies. We can
formulate this as a search problem. Machine Learning techniques will help.

We have to restrict the search to subspaces with useful properties: Parametrized Policies

Enter reward

The utility function is a very weak supervision signal, too coarse-grain.

Reward is obtained every time-step, it informs about how good the previous action
was (locally speaking).

The new utility function is the sum of the rewards.

We need to go “Deep”

Use deep architectures for the internal representation of the parametrized policies:

● Differentiable policy
● Efficient gradient calculation (chain-rule)
● Efficient inference (vectorized, GPUs)
● Very high capacity model

Taxonomy of RL Algorithms

Model-Free vs Model-Based
The model predicts state transitions and rewards.

● Capability to think ahead and plan
● Bias in the model can be exploited by the agent

Model-free algorithms are more popular because they easier to implement

Model-Free Algorithms

Policy Optimization

● Deterministic policy
● Stochastic policy

Mostly performed on-policy

Model-Free Algorithms

Q-Learning

Learns the action-value function Q(s, a)

Typically performed off-policy

Model-Free Algorithms

Policy Optimization vs Q-Learning

● Policy optimization algorithms: More stable and reliable

● Q-learning: More sample efficient because they reuse data more
effectively

Model-Free Algorithms

Hybrid Algorithms

These algorithms aim to combine the strengths of Q-learning and policy
gradients.

Model-Based Algorithms

Learn the Model

1. Run a base policy
2. Observe the trajectory
3. Fit the model

Given the Model

There are cases where some rules define
the model (e.g., Go)

Algorithms
Main focus:

● Policy Optimization
● Policy Optimization + Q-Learning

Vanilla Policy Gradient
Goal: train stochastic policies in an on-policy way (no replay buffer, less sample
efficient)

It can be used in discrete and continuous environments

● Raise the probability of choosing actions that generate good results
● Lower the probability of choosing actions that generate bad results

STATE POLICY ACTION

Proximal Policy Optimization
Motivation: to avoid getting too far from the previous policy when taking big steps
of improvement

Two primary variants of PPO:

● PPO-Penalty: it uses KL-constraint previously proposed by Trust Region
Policy Optimization (TRPO)

● PPO-Clip: it relies on specialized clipping in the objective function

Interpolation between Policy Opt. and Q-Learning
● Deep Deterministic Policy Gradient (DDPG)

● Soft Actor Critic (SAC)
○ Bridge between stochastic policy optimization and DDPGlike approaches

Off-Policy
data

Bellman
equation

Q-Function Policy

Agent experience

● Exploitation

● Exploration

Exploration vs. Exploitation

● Batch of data?
● Data gathering?

● Agent exploration or Agent exploitation?

Regret in Reinforcement Learning - Notion
of regret

 Greedy

Greedy

Epsilon Greedy

Self-Play

● Example: AlphaZero

Competitive self-play

Difference between classical RL and self-play

Conclusions
● RL is a very powerful tool

● A lot of potential

● The future of AI

