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What is RL?

● RL: Applying machine learning techniques to automatically learn agents that do well  (with respect to 
some metric) in an environment by optimizing for some objective function in the space of agent 
policies. 

● Deep RL: augmenting the RL field with Deep Learning concepts. 
○ deep architectures
○ methods to train the architectures



AI agents 101
● Environment

○ State space
○ State transition function

● Agent
○ Observation space
○ Action space
○ Knowledge base

■ Internal representation
■ Update functions

○ Policy
■ Internal representation

● Objective
○ Utility function
○ Fitness function



Machine Learning in action
We have a measure of the “goodness” of the policy and we have defined a space of valid policies. We can 
formulate this as a search problem. Machine Learning techniques will help.

We have to restrict the search to subspaces with useful properties: Parametrized Policies



Enter reward

The utility function is a very weak supervision signal, too coarse-grain.

Reward is obtained every time-step, it informs about how good the previous action 
was (locally speaking).  

The new utility function is the sum of the rewards.



We need to go “Deep”

Use deep architectures for the internal representation of the parametrized policies:

● Differentiable policy
● Efficient gradient calculation (chain-rule)
● Efficient inference (vectorized, GPUs)
● Very high capacity model



Taxonomy of RL Algorithms



Model-Free vs Model-Based
The model predicts state transitions and rewards.

● Capability to think ahead and plan
● Bias in the model can be exploited by the agent

Model-free algorithms are more popular because they easier to implement



Model-Free Algorithms

Policy Optimization

● Deterministic policy 
● Stochastic policy

Mostly performed on-policy



Model-Free Algorithms

Q-Learning

Learns the action-value function  Q(s, a)

Typically performed off-policy



Model-Free Algorithms

Policy Optimization vs Q-Learning

● Policy optimization algorithms: More stable and reliable

● Q-learning: More sample efficient because they reuse data more 
effectively



Model-Free Algorithms

Hybrid Algorithms

These algorithms aim to combine the strengths of Q-learning and policy 
gradients.



Model-Based Algorithms

Learn the Model

1. Run a base policy
2. Observe the trajectory
3. Fit the model

Given the Model

There are cases where some rules define 
the model (e.g., Go)



Algorithms
Main focus: 

● Policy Optimization
● Policy Optimization + Q-Learning



Vanilla Policy Gradient
Goal: train stochastic policies in an on-policy way (no replay buffer, less sample 
efficient)

It can be used in discrete and continuous environments

● Raise the probability of choosing actions that generate good results
● Lower the probability of choosing actions that generate bad results

STATE POLICY ACTION



Proximal Policy Optimization
Motivation: to avoid getting too far from the previous policy when taking big steps 
of improvement

Two primary variants of PPO:

● PPO-Penalty: it uses KL-constraint previously proposed by Trust Region 
Policy Optimization (TRPO)

● PPO-Clip: it relies on specialized clipping in the objective function



Interpolation between Policy Opt. and Q-Learning
● Deep Deterministic Policy Gradient (DDPG)

● Soft Actor Critic (SAC)
○ Bridge between stochastic policy optimization and DDPGlike approaches

Off-Policy 
data

Bellman 
equation

Q-Function Policy



Agent experience

● Exploitation 

● Exploration



Exploration vs. Exploitation

● Batch of data?
● Data gathering?

● Agent exploration or Agent exploitation?



Regret in Reinforcement Learning - Notion
of regret

  Greedy



Greedy



Epsilon Greedy



Self-Play

● Example: AlphaZero



Competitive self-play



Difference between classical RL and self-play



Conclusions
● RL is a very powerful tool

● A lot of potential

● The future of AI


