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Abstract—

This work aims to provide a humble overview of the Reinforcement

Learning (RL) field, and in specific Deep Reinforcement Learning

(Deep RL). We first situate RL in a taxonomy of its neighbour

and composing fields, there we talk about everything that needs

to be known to start understanding RL, and we show why the

RL approach makes sense. We then explain what RL algorithm

paradigms exist and what are key types of methods. After that we

show some trademark techniques of RL (and Deep RL) without

getting into too much detail. Finally there is a discussion about

exploration, which is one of the most crucial aspect of any RL

algorithm.
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1 Structure of this work

This work is divided into several sections
each of which builds on top of the previous one.
Section 2 gives an introduction to the paper and
contextualizes it. Section 3 situates Reinforcement
Learning by explaining what the neighbour and
composing fields are and formalizing the ideas
that lead to RL. Section 4 explains briefly the
core idea of RL and introduces DeepRL.Section 5
gives us a breakdown of the types of algorithms
and paradigms that can be currently relevant
in the RL scope. Section 6 explains some of the
most popular algorithms without getting into too
much detail. Finally section 7 concludes with a
discussion about agent exploration, one of the
most determining factors in the success or failure
of any RL algorithm.

Disclaimer: we will mostly refer to RL
throughout the document, but it shouldn’t matter

since most things can be applied to Deep RL as
well.

2 Introduction

It is not news that artificial intelligence agents
have achieved superhuman-like performance on a
series of complex tasks[1]; tasks that most people
would consider require of some real emergent
creativity and cognitive ability that is not present
in previous breakthrough AI works. In the center
of this revolution stands Reinforcement Learning
(RL), and in concrete Deep Reinforcement
Learning (Deep RL)[2].

RL ,in a nutshell, consists in applying machine
learning techniques to automatically learn agents
that do well (with respect to some metric) in an
environment by optimizing for some objective
function in the space of agent policies [3]. Deep
RL is just augmenting the RL field with Deep
Learning concepts, which often involve (but are
not limited to) deep neural network architectures
and the methods to train them[4]. This is not a
new idea, but has caught a lot of attention lately
due to the achievements of Deep RL in training
agents for game environments and game-like
systems.

While RL has proven its worth in these clean-
room conditions RL methods currently struggle
with real-world environments where the signals
are weaker, ambiguous and unpredictable; how-
ever this is currently a hot line of research that
has a lot of expectations[5]. In any case, the
potential of this field can not be understated and
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Figure 1: A taxonomy of the disciplines relevant
for RL

is considered by many experts to be the path to
AGI (Artificial General Intelligence)[2].

3 Situating Reinforcement Learning

As we have said, RL exists in the intersection
of the AI agents and Machine Learning fields (see
figure 4), the idea being that the behaviour of the
agent can be learned from data about environment
interactions. However this combination of fields is
not as trivial as it might seem as we will explain
in this section; for that, we will break down the
ideas that led to the proposal of Reinforcement
Learning as a technique and ultimately to the
revolution that is currently happening.

3.1 AI agents and environments

Lets start, in the first place, by talking about
the problem that RL was invented to solve,
that is: how to construct agents that behave
intelligently in a target environment. This is
a very general problem, and as such a lot of
problems from other fields (e.g. Game Theory,
Control Theory, Swarm Intelligence, Theory of
Optimal Control) can be traced back and reduced
to this simple problem description. It is not
surprising then that the community considers it
an AI-complete problem, meaning that, solving
this problem solves the core problem of AI that

Figure 2: The feedback loop between the agent
and the environment

all AI fields struggle with.

The central elements in this problem
description are the agent and the environment.
The agent lives in the environment and it
constantly interacts with it. For the most
part, the field of AI agents assumes that the
interactions between agent and environment are
performed at discrete time steps.

In the following subsections we will explain the
concepts that are important for the AI agent prob-
lems, for that we make formalize these concepts,
which we will use later.

3.1.1 Observations

At each time step the agent receives an
observation o of the state s of the environment,
this observation is a surrogate of the real state
though, since it may be the case that there is
incomplete information (partially-observable
environments) and/or there is noise in the
observation signal (real-world environments).

In any case we call the set of all possible
observations the observation space O and we
may call the set of all possible environment states
the state space S. So at each time step t the
environment is at state

st ∈ S

and the agent receives

f(st) = ot ∈ O

, where f is a mapping between S and O,

f : S −→ O

f may preclude some information and/or intro-
duce some noise into it (as explained previously),
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for some environments f is just the identity func-
tion and in that case

st = ot

, this is the case of fully-observable environments
(e.g. chess ).

State and observation spaces can be continu-
ous, discrete or a mixture of both, but are almost
always multidimensional; whether it is vectors,
matrices or higher order tensors.

3.1.2 Actions

After receiving an observation st at time t an
agent will decide on what action at to take. In this
formalism the agent always takes an action, so we
consider that doing nothing is taking the action
do nothing sometimes expressed as

at = e

(the identity element).

In the case of actions too, we call the set of
possible actions the action space A, which may
again be discrete, continuous or something in
between and will probably be multivariate.

For determining the action at ∈ A to take, the
agent may use all the information about the inter-
actions with the environment, including the last
observation. This information (or a surrogate of
it) is stored in the memory of the agent commonly
referred to as the Knowledge Base (KB) of the
agent. The action at at time t is then a function µ
of the KBt,

µ(KBt) = at

. In most of the literature µ is called policy, and
acts as the ”brain” of the agent.

The KB gets updated when an observation
ot comes in from the environment and may be
optionally updated with the action at the policy
took in that time-step. So we have

KB′t = fupdate1(KBt, ot)

,

at = µ(KB′)

Figure 3: Simple diagram of the internals of an
agent

and

KBt+1 = fupdate1(KB
′
t, at)

When the environment is fully observable
there is no need for KB since the observation
o = s already includes all the information avail-
able. In this case there is no KB and the next
action at to take is solely a function µ of the last
observation ot,

at = µ(ot)

, but since ot = st this is commonly formulated as

at = µ(st)

We’ve presented deterministic policies to make
things simple, but policies may also be stochastic,
meaning that they don’t necessarily return the
same action a for the same KB (or observation
s). Instead they return an action at under a given
KB′t (or state st) depending on some probability
distribution. A stochastic policy gets modeled as
a random variable π, and to get at you need to
sample π given KB′t (or st), that is

at ∼ π(·|KB′t)

or

at ∼ π(·|st)

For the rest of this paper we will only talk
about policies, Knowledge Bases are important
but it’s just an extra hurdle and there are a lot
of detail.
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3.1.3 State transitions

Between time-steps the environment state
may change. This may happen because the agent
acted on it or it may change on its own also.

When the state of the environment solely
depends on the current state and in the action
taken by the agent, we say it is a deterministic
environment and there will be a function P
(which the agent may not know) that maps from
state action pairs (st, at) to new states st+1,

st+1 = P (st, at)

In the case of stochastic environments, a ran-
dom variable P of possible next states exists
which, when sampled given that state st and
action at are know, returns a new state st+1 with
some probability of a distribution

st+1 ∼ P (·|st, at)

If the environment is stochastic, the initial
state is usually given by sampling a random vari-
able p0 that has a probability distribution for
different starting states

s0 ∼ p0

3.1.4 Episodes

An episode (or roll-out) τ is a sequence of
contiguous states and actions (s0, a0, s1, a1, ..., sn)
that represent the trajectory of the agent in the
environment. It lets us talk about the agent acting
in the environment in a more general way, without
nitpicking in each individual interaction.

3.1.5 Utility functions

In the description of the AI agent problem
we have said that we want to build agents
that ”behave intelligently”, however what do
we exactly mean by ”intelligently”? Intelligent
behaviour shows up as the means to accomplish
an objective, thus we would like to know whether
the agent accomplishes the objective and we
may also want to asses the efficiency (time-steps
needed, cost of the actions taken, ...) of the agent

in doing so.

It is apparent that we need some sort of metric
to measure how well an agent is doing in the
environment. We call a metric R that measures
agent performance through the duration of an
episode τ an utility function. R is a scalar
function that returns higher values for episodes
that went better than for those that did not.

The utility function is not part of the environ-
ment or the agent, but a tool of the agent designer
to benchmark the agent, as such, the designer
has to define this function in such a way that it
rewards the behaviour the designer is looking for
and penalizes bad behaviour.

3.1.6 Fitness functions

An utility function R gives a measure of
how well an agent did in a given episode τ ,
this will depend on how good the agent is on
the target task, however, if there is a source of
uncertainty in the agent (a stochastic policy) or
in the environment (a stochastic environment),
it may be the case that the agent got lucky and
did better than it usually does, or that it got
unlucky and did a lot worse. This variance is fine
for talking about and comparing episodes, but
it is not a good if we want to make meaningful
statements about the agent.

A function J that measures the performance
of an agent in an environment overall, without
considering individual episodes, is called a fitness
function. A fitness function J of a policy π is the
expected value of the utility function R when gen-
erating episodes according to the policy of π and
to the state transition function P . Assuming both
the policy and the environment are stochastic (if
some of them is deterministic is even simpler)

J(π) = E
τ∼π

[R(τ)]

if we expand this expectation

J(π) =

∫
τ

P
τ∼π

(τ) ∗R(τ)

where P
τ∼π

(τ) is the probability of a trajectory

τ in the stochastic environment sampling actions
from the stochastic policy π, so this looks like
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P
τ∼π

(τ) = p0

n∏
t=0

P (st+1|st, at)π(st|at)

There is a problem with this expression
though, the fact is we do not know the
distribution (or function) P unless we have
a complete model of the environment, this is
rarely the case. Instead this expressions serves
more as a formal mathematical baseline for the
methods.

This means we can’t analytically obtain J and
so we can’t directly calculate J(π), however, we
can do the second best thing: Form a numerical
sample estimate of J(π).

J(π) is just the expectation of R(τ) (under
policy π), to form a sample estimate ĝ we only
need to sample a set D of episodes (i.e. let the
agent with policy π run in the environment for
various episodes) and compute the mean of their
utility values R

J(π) ∼ ĝ =
1

|D|
∑
τi∈D

R(τi)

The choice of the size of D has to take into
account the cost of each episode and the required
estimate accuracy. A simple simulation will have
a low cost so a high number of roll-outs can be
recorded while the cost on a real-life environment
is prohibitive and you probably will have to settle
with a less accurate estimator ĝ for J(π).

3.1.7 The goal of agent design

With all of the agent formalism out of the way
we can finally talk about the goal of this field: For
some problem (environment and agent interface
description), we want to find policies (and KB
update functions) π that have a high fitness value.
How high it needs to be depends on the needs
specified in the problem. We may sometimes talk
about optimality but finding optimal policies is
not realistic for all but the simplest environments.

The space of policies to consider is all the
computable functions that agree in their signature

Figure 4: Diagram to show a possible look of the
space of policies

with the observation and action spaces, so every µ
and π that

µ : O −→ A

and

π : O −→ P (A)

In the Good-Old-Fashioned Artificial
Intelligence (GOFAI) days, researchers would,
with a lot of work, devise pretty good algorithms
for the policy (an algorithm is just an abstract
implementation of a function). These methods are
not only very expensive in the human resources
side, but also very inflexible and not scalable at
all.

For most complex problems this type of
techniques have proven to be infeasible, and even
for simpler problems the GOFAI solutions get
stomped by the Machine Learning counterparts,
which leads nicely into the next topic.

3.2 Learning policies with machine learning

In the previous section we have established
that the core problem of the design of AI agents
is to find policies that have high fitness functions
for the target environment (i.e. that their average
utility performance, the expectation, is high in
the environment).

We said that the valid policies for an agent are
those that agree in signature with the interfaces
of the agent, that is policies of the signature
π : O −→ A.
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With these definitions of the space of policies
and the fitness function of policies, it is only
natural to formulate this as a optimization
problem, where the space of solutions is the space
of policies; and the objective function is the policy
fitness function.

Even for small sets of O and A, the amount
of computable functions is anything beyond what
a human can grasp. So manually checking all
policies is out of the window. However a computer
can methodically check a huge amount of policies
in a short span of time.

While exhaustively looking at every policy is
still practically impossible (no matter how much
compute power, realistically speaking), we can
be more clever about how we chose to search the
space.

In this section we describe the machine
learning techniques we can employ to efficiently
look for a good solution in a space of policies.

3.2.1 Baseline ML algorithm

The baseline ML algorithm would involve
enumerating all the policies that exist in the
policy space, and assessing the performance
of the policies one by one, to later choose the
highest fitness function in a ”king-of-the-hill”
type of algorithm. This algorithm is sometimes
called British Museum. Given enough time, the
algorithm will find the best policy (if the space
of policies is finite). This as previously stated is
not a valid approach, but serves as a theoretical
baseline to compare with other algorithms.

A simple improvement to this baseline is
to sample the policies at random with some
probability distribution, this is called Monte
Carlo sampling, and while it may not find the
optimal policy any quicker on average, it does
have lower variance between different problems
(environment and agent descriptions).

These baseline algorithms will always find the
globally optimal policy, but they are so costly
that cannot be applied in any interesting problem.

One way of obtaining easier to run algorithms
is to relax the properties of these brute-force
approaches. For instance, finding the absolute
optimum is very hard because only one or few
exist in the space, however there will probably
be a lot of ”close-to-optimal” policies that are
99.9% as good. If we can settle with less than
optimal but still very good solutions then our
task becomes easier.

If we just want a good policy (a solution
that is almost as good as optimal), then Monte
Carlo sampling becomes a good choice for lower
dimension spaces. However as the dimension of
the space goes up this approach quickly becomes
unusable.

British Museum can be augmented with
heuristics to guide the search of the optimal
policy. With good heuristics the performance
can be improved a lot and if some properties
are relaxed (like for example the completeness
of the algorithm), the algorithm can find decent
solutions if left long enough. This is the case of
some of the classic search algorithms like Hill
Climbing or the more general Beam Search.
The problem that these algorithms have is that
their complexity grows exponentially with the
dimension of the search space, much like Monte
Carlo sampling.

The phenomenon that produces higher
dimension spaces to be harder to deal with is
called the dimensionality problem. It is a
problem that appears all throughout Machine
Learning and is well studied. The notion of this
problem is that to have a good understanding of
how a space looks, you need to sample the space
thoroughly in such a way that in any region of
space there is a tightly packed cluster of sample
points. This density of samples is hard to keep
when the number of dimensions go up.

To illustrate this, imagine a 10 by 10 node
lattice that spans a 2 dimensional space, if we
want to span a 3 dimensional space with the same
amount of precision, we now need a 10 by 10 by
10 lattice, which requires ten times the amount of
sample points. It is as if the amount of free room
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in the space grows exponentially with dimension.

To mitigate the effects of the dimensionality
problem we can restrict the search to a smaller
subspace (a subset of the policy space). We would
like to select the space following two criteria: first,
we want to keep the size of the search space to a
minimum but we want the space to contain good
solutions so we have to find the balance; second,
we would like the subspace to have properties
that will aid us in the search.

In the next section we will see how parametriz-
ing the definition of the policy can help us both,
reduce the search space and get valuable proper-
ties in the new search subspace.

3.2.2 Parametrized policies

Most of machine learning today uses
parametrized models, where the span of the
parameters of the model (what are all the possible
values of the parameters) defines the model space.
A parametrized model is usually a function fθ(x)
which has some parametric terms θ(that are
usually scalar values) that alter the behaviour of
the function. So what we would like to do now
is to find the parameters so that the model does
what we want, i.e. minimizes some metric of loss.

For us the model is the policy. The parameters
θ of the parametric policy πθ alter the behaviour
of the policy, in this case we want to find θ to
maximize the fitness function of the policy. Note
how we stopped looking directly for the policy
π and we are now optimizing for parameters θ.
As you can see we have effectively transformed
a problematic function search problem into a
well-defined numeric optimization problem.

It look as though we did magic and now a hard
problem is an easy one, however to obtain this
properties we had to give up search space. The
catch is that the space that these parametrized
policies span is way smaller than that of all
policies, so it might be (and probably will be
the case) that our subspace doesn’t contain
the optimal policy. However, as previously
explained, hoping to find the optimal policy is
not realistic. Instead, we hope that the space that

the parametrized policies span, is large enough to
contain quasi-optimal policies.

If we have selected a good function fθ(x)
to parametrize, the span of the parameters
will directly correlate with the span of the policy
subspace. In that case, more parameters will result
in higher parameter span, which in turn results
in higher policy subspace span. In short, our
parametrized generic policy covers more policies
in the space of policies the more parameters it
has. In the Machine Learning literature this is
commonly called model capacity, for the sake
of keeping it in the field of AI agents lets just
call it policy capacity. We would like to find a
good balance for policy capacity, one that is not
to small to include good solutions in the subspace
and one that is not too large to hamper the search.

The selection of the parametrized function is
important not only to ensure that its capacity
scales with more parameters, but also to provide
interesting properties that can be useful when
searching for solutions. A basic property that we
may ask, is for the function fθ to be continuous
for all x with respect to θ. This is an interesting
property to have, specially if the objective
function that we are using to asses the quality of
the parametrized function fθ is also continuous
with respect to it; in which case the objective
function will be continuous with respect to θ and
we can optimize for it directly forgetting about f
altogether.

For this optimization problem we have that
we want to maximize J(fθ), and we know that
the fitness function J is continuous with respect
to θ. Continuity simply means that the function
J(ftheta) will not have sudden jumps for similar
values of θ. Armed with this property we can
employ a myriad of local optimization techniques
like Evolution Strategies, Finite difference
methods, Hill Climbing (with no necessity for
heuristic), Beam search (with no necessity for
heuristic) and some global search algorithms like
Particle Swarm Optimization, Simulate
annealing, Genetic Algorithms and all other
sorts of meta-heuristics and bio-inspired methods.
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These techniques are far better than the
baselines proposed in the previous section,
however it is not what is used in the industry.
See, the problem with this kind of methods is
that they require to sample a lot of points of
the fitness function to make any progress at all,
and thus they take forever in large dimensional
spaces. In the current Machine Learning state of
affairs, the most used optimization methods are
gradient based, which means that they compute
the gradient of the objective function ∇θJ(fθ)|θk
in the point of the current parameters θk (for each
update of the parameters).

3.2.3 Gradient based methods

If we choose our parametrized functions
carefully we can have the property of
differentiability, having this property will
further restrict the choice about the policy but we
can always make that up with more parameters.
With a differentiable policy and a differentiable
fitness function we can get the gradient of the
fitness function with respect to the parameters.

The gradient is useful because it tells us how
to update the parameters θ to improve the fitness
function J(fθ) at each step, so we only have to
keep track of one set of parameters and iteratively
update them according to the gradient. This
will yield progressively better parameters for
the policy, which will eventually converge in a
maximum. Since this is a type of local search, the
maximum might be local and not global. If the
fitness function were concave (in minimization
convex) with respect to the parameters, we
wouldn’t have this problem, since there would
only be one maximum and the algorithm wouldn’t
get stuck in another lower value local maximum.

Making sure loss functions are convex is a
very important part of gradient methods and is
being studied thoroughly.

We have talked about calculating the gradient
of the fitness function with respect to the
parameters of a policy, but how can we do that?
Is it even possible?

Recall from the AI agents section that the
fitness function J of a policy π (we are still going
to use the stochastic policy) is

J(π) = E
τ∼π

[R(τ)]

now if we introduce parametrized policies

J(πθ) = E
τ∼πθ

[R(τ)]

the gradient is then

∇θJ(πθ) = ∇θ E
τ∼πθ

[R(τ)]

if we expand the expectation and put the
gradient inside (integral and gradient has nothing
to do)

∇θJ(πθ) =

∫
τ

∇θ P
τ∼πθ

(τ)R(τ)

it looks like we are stuck, however we can get
progress if we use what is now as the ”grad-log
trick” which is a reformulation of the gradient of
the logarithm and the chain-rule

∇f = f∇ log f

this lets us proceed

∇θJ(πθ) =

∫
τ

P
τ∼πθ

(τ)∇θ log P
τ∼πθ

(τ) ∗R(τ)

this is an expectation yet again so

∇θJ(πθ) = E
τ∼πθ

[∇ logP (τ)R(τ)]

if we recall the expression for P

P
τ∼π

(τ) = p0

n∏
t=0

P (st+1|st, at)π(at|st)

the log of that will be

log P
τ∼π

(τ) = log p0

n∑
t=0

logP (st+1|st, at)+log π(at|st)

and applying the gradient, the first two terms
don’t depend on θ so

∇θ log P
τ∼π

(τ) =

n∑
t=0

∇θ log π(st|at)
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so if we put everything together

∇θJ(πθ) = E
τ∼πθ

[

n∑
t=0

∇θ log π(st|at)R(τ)]

given that this is an expectation we make our
estimation ĝ, the average over episodes in sample
set D

∇θJ(πθ) ∼ ∇θĝ =
1

|D|
∑
τi∈D

n∑
t=0

∇θ log π(st|at)R(τ)

with the previous expression we can tackle
the problem using gradient ascent. This is the
most basic form of the policy gradient, and is
sometimes considered RL territory, however RL
methods don’t use this expression.

The fact of the matter is that the fitness
function is a very weak supervision signal and
is too coarse grain. What we would like to have
is some notion of cumulative score that gets
updated every interaction step as fitness function,
so as to provide a signal in every action.

This score we assign to the agent at each step
is called reward and the sum of all the rewards
collected during an episode is a fitness function
called return. The reward concept is the main idea
behind RL.

4 The idea of Reinforcement Learning

4.1 Reward

The Reinforcement Learning approach uses a
reward function R that at each interaction at
time step t, expressed by (st, at, st+1), computes
a reward value rt. So

rt = R(st, at, st+1)

The fitness function R(τ) of the agent is the
sum of all rewards called return and expresses
how well an agent did for the duration of an
episode τ

R(τ) =

n∑
t=0

rt =

n∑
t=0

R(st, at, st+1)

Before we had to meticulously craft a fitness
function, now we need to engineer a good reward
function, and the fitness function will directly
depend on it.

4.2 Value functions

The goal of the agent will be to collect as
much reward as possible, however it can’t act
greedy since making actions that give immediate
reward might result in the agent going into states
that have low value, i.e. the total reward that you
can get from that state is low. The value of a state
is formalized as Value Function:

V πθ(s) is the expected return that an agent
acting according to parametrized policy πθ will get
starting from state s

V πθ(s) = E
τ∼πθ

[R(τ)|s0 = s]

, this is called the on-policy Value Function

We may also talk about the maximum value
of a state V ∗(s) as being the expected return that
can be obtained if starting from state s and acting
optimally

V ∗(s) = max
θ

E
τ∼πθ

[R(τ)|s0 = s]

, this is called the optimal Value Function

To succeed the agent has to trade-off the
immediate and long term reward that the action
will produce. The expected return of taking an
action a in state s and proceeding according to
a policy πθ, is also formalized as Q-function or
Action-Value function:

The on-policy Q-function Qπθ(a, s) tells us
what return to expect, in average, if we take action
a in state s and follow policy πθ afterwards

Qπθ(a, s) = E
τ∼πθ

[R(τ)|s0 = s, a0 = a]

Likewise we have an optimal Action-Value
Function Q∗(a, s) which returns the expected
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return but if we acted according to the optimal
policy

Q∗(a, s) = max
θ

E
τ∼πθ

[R(τ)|s0 = s, a0 = a]

4.3 Q-learning

These functions are very useful to have since
they give the agent the ability to plan. In the
case of the optimal functions, obtaining them
would allow the agent to act optimally by using
these functions to determine what action will
produce the most long term amount of reward
and selecting the actions with that criteria. Of
course we don’t know any of these functions. But
we can work around that:

We can estimate the on-policy functions,
with simple sample estimation. The optimal
ones however are a bit more complex, to get
approximations of those we’ll need to use
Bellman equations. These equations are
self-consistency equations that can be used to
numerically approximate the Q-function using a
sort of value iteration which is sometimes called
approximate dynamic-programming. These
techniques are standard issue in the field of RL
known as Q-learning, but we won’t get on them
with much detail.

The previous technique is an off-policy
optimization technique in the sense that we don’t
keep updating a single policy by continuously
testing the policy and updating the parameters to
slightly improve it. In this case we directly look
for the Q-function which helps us act optimally.

These techniques are great when they work
because they have very good sample efficiency,
since they can use information from roll-outs
of any policy. Whereas on-policy optimization
techniques are limited to only using information
from the roll-outs of just the last policy.

However off-policy methods are quite unstable
and often don’t converge, and when they converge
is thanks to a lot of tricks employed to make
the Q∗ estimate stable. Because of that on-policy
methods are more frequent as they are more stable
and can work out-of-the-box in more problems.

4.4 On-policy optimization

The most basic RL version of policy gradient
optimization builds upon the ML version with the
fitness function, that if we recall is

∇θJ(πθ) ∼ ∇θĝ =
1

|D|
∑
τi∈D

n∑
t=0

∇θ log π(st|at)R(τ)

note that in this expression R(τ) acts as
a weight that is higher for actions from good
episodes and lower for actions from episodes
that get low return (utility score). This is done
regardless the action was a good or not, so if in
a good episode the policy took a bad action this
gradient will reinforce that action the same as the
actions that led to the episode being good, the
same happens in the opposite case.

The fact of the matter is that the actions
are reinforced taking into account the past of the
action, which from the point of view of how good
the action was has nothing to do. An easy way to
improve the above expression is to just reinforce
each action depending on the future reward sum
ignoring the past.

1

|D|
∑
τi∈D

n∑
t=0

∇θ log π(st|at)
n∑
t′=t

rt′

This expression is equivalent to the previous
one (the expectation is the same) but gives better
approximation of the gradient with less samples,
which makes convergence way faster.

4.5 Deep RL

Deep learning studies the learning capabilities
of deep machine learning architectures. Deep
architectures rely in function composition to
get the representative power they are known
for. Function composition generates a layered
structure where each layer is a function that takes
some input from the previous layer and computes
an output which is passed to the next layer.

The layers create a hierarchical function which
is expected to break down the problem in the
input into simpler and simpler problems until
we have a solution in the output. The layers
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Figure 5: Taxonomy of algorithms in modern RL

are parametrized functions, so the whole thing
is parametrized. The building block functions
are also differentiable which makes the whole
composed function differentiable.

These architectures are often depicted as
computation graphs or networks, in particular
they are known in the media as Neural
Networks because the apparent similarities of
both types of systems.

A deep architecture may be used in RL and in
other fields to approximate functions. In Deep RL
we use Neural Networks (there are a lot of types)
as the parametrized policy and sometimes we may
use it to approximate Value functions.

5 Kinds of RL Algorithms
A non-exhaustive, but useful taxonomy of al-

gorithms in modern RL is presented in Figure 5.

5.1 Model-Free vs Model-Based RL

One of the most important characteristic of
RL algorithms is whether the agent has access to a
model of the environment. This model is actually
a function which predicts state transitions and
rewards.

The main advantage of using a model-based
algorithm is that it allows the agent to plan,
seeing what would happen for a range of possible
choices and deciding between its options. Agents
can use the results they obtain from thinking
ahead to learn a policy.
On the other hand, it is not a common situation

to have a ground-truth model of the environment.
In this case, the agent has to learn the model
from its experience. The biggest difficulty which
this option creates is the possibility of generating
a biased agent, performing well with respect to
the learned model, but sub-optimally in the real
environment.

Although model-free algorithms lose the po-
tential gains in efficiency, they are more popular
than model-based algorithms due to their facility
to be implemented.

5.1.1 Model-Free Algorithms

There are two main approaches to represent
model-free methods: Policy optimization and
Q-learning.

In policy optimization algorithms the agent
learns directly the policy function that maps state
to action.
There are two types of policies. Deterministic
policies map state to action without uncertainty.
By contrast, stochastic policies output a
probability distribution over actions in a given
state. The type of policy depends on whether the
environment is deterministic or not.
Policy optimization is mostly performed on-
policy, which means that each update only uses
data collected while acting according to the most
recent version of the policy.

Q-learning learns the action-value function
Q(s, a): how good it is to take an specific action
at a particular state. Basically a scalar value
is assigned to an action a given the state s.
A representation of steps taken by Q-learning
algorithms is shown in Figure 6.
This optimization is typically performed off-
policy, which means that each update can use
data collected at any point during training,
regardless of how the agent was choosing to
explore the environment when the data was
obtained.

The primary strengths of policy optimization
algorithms are their stability and reliability as
they allow you to directly optimize for the thing
you want.
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Figure 6: Steps taken by Q-learning algorithms

Figure 7: Representation of a generic model-based
algorithm

Contrarily, Q-learning methods only indirectly
optimize for agent performance, so they tend to
be less stable. However, these algorithms are more
sample efficient as a result of their capability to
reuse data more effectively.

Policy optimization and Q-learning are
not incompatible, and there exist a range of
algorithms that mix features of both methods.
These algorithms aim to combine the strengths of
Q-learning and policy gradients.

5.1.2 Model-Based Algorithms

Model-based RL has a strong influence from
control theory, and the goal is to plan through
an f(s,a) control function to choose the optimal
actions. There are two main approaches: learning
the model or learn given the model. In Figure 7
is shown how a generic model-based algorithm
learns and acts.

To learn the model a base policy is ran (e.g.,
random policy) while the trajectory is observed,
and the model is fitted using the sampled data. A
cost function is used to find the optimal trajectory

with the lowest cost.

Contrarily, it might be the case where the
model is already known and it can be given to
the agent. For example, in many games, like Go,
the rule of the game is a model (e.g., AlphaZero).

6 Policy Optimization

6.1 Overview

Once having an overview of the many RL
related algorithms, we will specifically develop the
Model-Free ones. As we already know, there are
two main approaches to these kind of algorithms:
Policy Optimization, on-policy, and Q-Learning
family, off-policy. However, it is possible to use
resources from both approximations in order to
obtain good results. This is the case of Deep
Deterministic Policy Gradient (DDPG) and Soft
Actor Critic (SAC), both interpolations between
Policy Optimization and Q-Learning.

On the one hand, DDPG is an algorithm
that uses deterministic policies and Q-functions
in order to make one improve the other. On the
other hand, SAC is a variant of DDPG which
instead uses stochastic policies, entropy regular-
ization and clipped double-Q trick among others.

However, we will mainly focus on an algo-
rithms completely based on Policy Optimization.
In this part, we will need to first understand what
Policy Gradients are. The idea underlying policy
gradients is to push up probabilities of actions
that lead to lower return, until you arrive at the
optimal policy.

6.2 Vanilla Policy Gradient

The goal of VPG is to train stochastic policies
in an on-policy way. Unlike off-policy algorithms,
it does not use a replay buffer to store past experi-
ences, so it learns from what the agent encounters
in the environment in that exact moment. This
makes it less sample efficient. It can be used in
either discrete or continuous action spaces.

The action selection randomness lowers over
the course of training, because it tends to exploit
rewards already found, sometimes avoiding get-
ting an optimum result.

Equation: (see Figure 8)
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Figure 8

Figure 9

πθ: our parametrized policy.
J(πθ): expected finite-horizon discounted return of
the policy.πθ

The way the algorithm works is by updating
the policy parameters: (see Figure 9)

Policy gradient methods usually compute ad-
vantage function estimates based on a discounted
return. The advantage is obtained subtracting the
value function to the discounted sum of rewards:

The discounted return is the sum of all the
rewards obtained during the in each timestep in
the same episode, whereas the value function gives
an estimate of the discount rewards from this
point onward If we subtract them, we get the
advantage estimate.

If the advantage estimate was positive, the
actions resulted in better than average return, we
increase the probability of selecting them again in
the future in the same state. Else, it will do the
other way around.

6.3 TRPO and PPO

A problem we encounter with Policy Gradients
is that we may take a step too far from the previ-
ous policy and ruin our procedure. This problem
was first tried to solve with the Trusted Region
Policy Optimization (TRPO).

Equation: (see figure 10)
In order to avoid moving too far from the

previous policy, the KL constraint was added: (see
figure 11)

The use of this constraint sometimes leads
to bad training behaviours. Finally, we arrive to

Figure 10

Figure 11

Figure 12

the state of the art : Proximal Policy Optimiza-
tion (PPO). There is a version of this algorithm
which basically adds this KL constraint directly
to the optimization objective. Just like TTPO,
this approach is also trying to make really big im-
provements in the policy we are trying to optimize
trying to avoid taking too big steps so the policy
does not totally ruin.

There are two primary variants of PPO: PPO-
Penalty and PPO-Clip.

PPO-Penalty approximately solves a KL-
constrained update like TRPO, but penalizes the
KL-divergence in the objective function instead
of making it a hard constraint, and automatically
adjusts the penalty coefficient over the course of
training so that it’s scaled appropriately.

PPO-Clip does not have a KL-divergence
term in the objective and does not have a con-
straint at all. Instead relies on specialized clipping
in the objective function to remove incentives for
the new policy to get far from the old policy. This
is the one we will develop.

Policy parameters update this way: (see figure
12)

where L is: (see figure 13)

6.4 Interpolations between Policy Optimiza-
tion and Q-Learning

Moving to methods that involve an interpola-
tion between Q-learning and Policy Optimization,
there are two algorithms that should be taken into
account.

First of all we have Deep Deterministic Policy
Gradient. It uses off-policy data and the Bellman

Figure 13
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Figure 14

Figure 15

equation to learn the Q-function, and uses the Q-
function to learn the policy. It can only be used
for environments with continuous action spaces.

Just like in Q-Learning, if you know the op-
timal action-value function Q*(s,a), then in any
given state, the optimal action a*(s) can be found
by solving (see figure 14)

Bellman equation describing the optimal
action-value function: (see figure 15)

We can set up a mean-squared Bellman error
(MSBE) function, which tells us roughly how
closely Q comes to satisfying the Bellman equa-
tion. Putting it all together, Q-learning in DDPG
is performed by minimizing the following MSBE
loss with stochastic gradient descent: (see figure
16)

Finally, it is to be mentioned an algorithm
which optimizes a stochastic policy in a off-policy
way, forming a bridge between stochastic policy
optimization and DDPG-style approaches: Soft
Actor Critic. A central feature of SAC is entropy
regularization. The policy is trained to maximize
a trade-off between expected return and entropy,
a measure of randomness in the policy.

7 Agent exploration

When an agent arrives to a solution, a
dilemma emerges. Should the agent keep doing
what it has done or should it try something new?
If the agent keeps doing what it has done, it
is called exploitation whereas exploration is
called when it tries something new. But how much
can we exploit and explore? There is a problem in
exploration which is that we don’t know what the

Figure 16

outcome will be, it could be better but it could
also be worse.
If we take the reference in humans, before making
the move they usually try to read reviews or
ask friends to make a decision, in Reinforcement
Learning on the other hand, it is not possible to
do that, but there are some techniques that will
help deciding the best solution.

7.1 Exploration vs. Exploitation

In the Reinforcement Learning setting, no one
gives us some batch of data like in supervised
learning. We are gathering data as we go, and
the actions that we take affects the data that
we see so sometimes it is worth to take different
actions to get new data. If we keep what we have
and we make the best decision given the current
information, we will never know if there is any
other better solution. That is why we talk about
agent exploration instead of agent exploitation,
because we need to gather more information to
lead us to better decision in the future.

7.2 Regret in Reinforcement Learning - No-
tion of regret

It is logical to think that if we try something
new and the solution is worse than the one we
had before, we regret our decision of exploring.
For example, if the new restaurant we try is bad
we regret going there and we consider the amount
we paid as a complete loss.
As we keep doing bad decisions the amount of
losses grows as well as the level of regret, so one
should think, can we keep the amount of losses
and the level of regret to the minimum? And the
answer is yes, at least in Reinforcement Learning.

Some of the methods to do that are Greedy
and Epsilon Greedy exploration methods. This
methods are fairly easy to understand and imple-
ment but they suffer from having a sub-optimal
regret on the solution which grows linearly by the
time.

7.3 Greedy

The Greedy method will lock on one action
that happened but it is not really the optimal
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Figure 17: A difference on regret between Greedy
and Epsilon Greedy

action, so Greedy will keep exploiting this action
while ignoring others that might be better.

7.4 Epsilon Greedy

The epsilon greedy (ε − greedy), where
0<ε<1 is a parameter controlling how much
exploration or exploitation we have to do. The
agent chooses exploitation with the probability
of 1 − ε, choosing the action that it believes has
the best long-term effect. In the other hand, the
agent chooses exploration with the probability of
ε, and the action chosen is random. ε is usually
a fixed parameter but can be adjusted to make
the agent explore progressively less (to keep the
level of regret minimized) or adaptively based on
heuristics.

Even if the Epsilon Greedy looks better and
maintains a better minimization of regret then the
greedy method, it is not as optimal as we want it
to be, as we can see in in the Figure 17.

So we can not do anything to minimize more
the regret? Yes, we can, taking different ap-
proaches.

7.4.1 Optimism in Face of Uncertainty approach-
ment

This approachm tries to enhance the explo-
ration minimizing the total regret. Let’s suppose
we have three slots machine with different prob-
ability distribution that we don’t know and after
some trials we got this result (see Figure 18).

Figure 18: Three slots machine probability distri-
bution

Figure 19: Three slots machine probability distri-
bution after choosing one

The Q(a1) has the largest interval [-1.8, 5.2],
so we take this because the Optimism in Face of
Uncertanity principle says that we choose the ac-
tion that present a higher reward than the others
even if it has a higher uncertainity. Now we take
the action a1 and the distributions becomes like
this (see Figure 19).

Now we know the blue distribution has lesser
maximum than the other two so we are less uncer-
tain about it and the next action will be to choose
any other, for example, the red one.
This is the principle but how con we implement
this in reality?

7.5 Upper Confidence Bound (UCB)

It is said that the exploration is needed be-
cause there always will be uncertainty about the
accuracy of the action-value estimates. It could be
better to select non-greedy actions to make them
more optimal, if we could estimate some upper
confidence on what the value of an action could be
we would optimize the action a lot. This is where
Ut(a) enters in action, Ut(a) is a high probability
upper confidence on the value of an action could
be and then we could pick the action with the
highest upper confidence value.
To do this, we add a term called upper confidence
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Figure 20: Chart of UCB results

bound to Ut(a) for each action and then select the
action that has the best result.

at = argmaxaεA(Qt(a) + Ut(a))

Obviously, Ut(a) is not constant, as time goes
by we become more and more certain of what
to expect of Q(a), so Ut(a) should shrink as we
become more confident of Q(a).
Having the number of trials (let’s call it t) and
the number of times action (a) was selected (call
it Nt(a)) we can define Ut(a) as:

Ut(a) =

√
2 log t

Nt(a)

As t increases the numerator slowly increases
while Nt(a) increases faster so at some point Ut(a)
decreases sharply.
Here is an example (see Figure 20):

At the point where t=1000 Ut(a) is 2.45 but
adding an unit decreases the value of Ut(a) to
1.73.
With this definition, we have that:

at = argmaxaεA(Qt(a) +

√
2 log t

Nt(a)
)

7.6 Summary

To summary all this agent exploration
methods, we can say that:
Greedy methods: We initialize the values of
actions optimistically assuming everything is
good until proven otherwise, and when that
happen, we suppress the action value to its
realistic value. This repeats for every and each
action value.
Random exploration: ε − greedy algorithm
does this well, if we are lucky tuning it right. The
problem is that if we get this wrong getting to the
optimal action in the end is a very hard task.
Optimism in the face of uncertainty: This

is not a safe exploration, in the real industry it
is recommended not to use this. Estimating how
much we don’t know about the value of an action
and using that to guide us towards actions that
have the most potential to be good could guide us
into a wrong and risky path if we are wrong.
UCB: Without any knowledge about the
problem systematically performs really well. This
approach of explore vs exploit guarantees to have
a logarithmic regret.

7.7 Self-Play

Self-Play is a term we use when an agent
only players against itself, and is one of the most
advanced techniques in AI for the last decade. An
example of this is AlphaZero, the algorithm that
learned to play Go, chess and shogi only playing
against itself, that is, AlphaZero’s agent did not
look at examples of well-played games or good
moves nor did it know heuristics that could help
it evaluate a position (for example giving a better
award for going to the left than to the right).
It simply played games against itself millions of
times. If only played against itself, where did new
information come from? that is where the agent
exploration comes.
The great benefit of self-play is that you don’t
need to give direct supervision, the agent uses
another agent (a clone of itself) to recover new
information to maximize its own objectives.
AlphaZero’s fast success comes from all the
game episodes that could simulate the paralleled
algorithm, learning much faster than a true
human.

7.7.1 Competitive self-play

As OpenAI has stated, the self-play will be a
core part of powerful AI systems in the future.
Alternatively to standard algorithms of
Reinforcement Learning that we have talked
before, the self-played AIs try new phyisical
skills likes ducking, catching, tackling. . .
without explicity designing an environment
with these skills in mind. This allows adaptation
of differently designed AIs to alternative
environments, as we have seen in AlphaZero.
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Figure 21: Self-play footbal agents

All of this is very interesting but how does this
work? We will explain this with the example of
two agents playing some penalty shots, sumo and
standing against wind.
Firstly, agents are trained to receive high rewards
for behaivours like standing and moving forward
which is better called as “exploration”, this are
eventually annealed to zero in favor of just
having a reward if they win and loose. Despite
this rewards being so simple, the agents learn
to make different moves to kick the ball, catch
the ball, faking the move, etc. . . Each agent’s
neural network policy is trained independently
with the algorithm Proximal Policy Optimization.

For example, the goalkeeper starts (see Figure
21) imitating the position of the shooter to have
more probabilities to stop the ball from entering
the goal and alternitavely the shooter learns to
kick the ball to throw it with more velocity.
To show how a trained agent can emerge complex
behaviours in a different environment, the
OpenAI team took a previous work for a walking
humanoid and removed the term of velocity,
added the negative euclidean distance from
the center of the ring and took this as a dense
exploration reward for sumo agents. Then they
slowly annealed it to zero so the agents learned
pushing the other player out for the remaining
training iterations for the competition reward.
As we can see (see Figure 22), the agents starts
acting almost like humans.
The hard part of this complex work is the
ingenuity needed from the human designers
because the agents’ behaviours will be bounded
in complexity by the problems that the human
designer can pose for them. Developing agents

Figure 22: Self-play sumo agents

Figure 23: Wind VS Self-play trained agent

through thousands and thousands of iterations of
matches against better version of themselves
we can create AI systems that improve
their behavours. This can be seen in Dota 2
project, where self-play let the team create a
Reinforcement Learning agent that could beat
top human players.

7.7.2 Difference between classical RL and self-play

A distinct characteristic of the self-play
trained agents is transfer learning, with the appli-
cation of skills learned in one setting to succeed in
another one. For example, taking the sumo agents
learn to stand and not fall while being perturbed
by a unknown variable“wind”while agents trained
to walk using classical Reinforcement Learning
would fall immediately.
The sumo agent learn to crouch and support
their weight without falling (see Figure 23), but
the classically trained agents (see Figure 24) fall
immediately.
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Figure 24: Wind VS Classically trained agent
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