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1 INTRODUCTION

1 Introduction

An autonomous agent that has to achieve a certain goal needs to know the actions
that he has to take in order to complete said task. For example, maybe we want a
robot to clean our room, make our bed or cook, but in order to complete these tasks
he has to do some actions prior to those. In order to cook, he needs to gather the
ingredients first, if he wants to clean the room he needs to take the vacuum cleaner
and so on.

Knowing this, we can say that a task contains a sequence of atomic actions (sit,
stand, move...) and interactions (pick-up object, turn-on object...). For example, if
we want the agent to watch the TV, he will pick-up the controller, turn-on the TV
and sit on the sofa.

The goal of VirtualHome is to automatically generate programs from natural
language descriptions, as well as from video demonstrations, potentially allowing
naive users to teach their robots a wide variety of novel tasks.

One thing to take into account is that there is a lack of databases describing
activities composed of multiple steps. That is why they create a dataset about this.

To create this dataset they first crowdsource common house activities, then they
formalize those activities via a Scratch interface thay they created. Finally, they
implement all the atomic actions and interactions in the Unity3D game engine. Once
this is done they can see how the agent behaves in the simulation environment and
analyse how it behaves.

Figure 1: VirtualHome
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2 DATA COLLECTION

2 Data Collection

The data collection has been done via crowdsourcing, the collection can be split into
two key parts.

• First, they asked AMT workers to provide verbal descriptions of daily house-
hold activities. These activities have to be described with “high level” names
such as “make coffee” or “clean the room” and describe it in detail. These
activities are random activities that can happen in one of the 8 possible scenes
(living room, kitchen, dining room, bedroom, kids bedroom, bathroom, entrance
hall, and home office). It is important to take into account that these are
descriptions in ’human language’.

• Second, they asked the same workers to translate the descriptions into pro-
grams that would drive the robot to the fulfillment of said task via an interface
built on Scratch. After this, they hired qualified workers via Upwork to double
check the data.

2.1 Dataset Description

The programs are composed by a sequence of steps, each instruction is a Scatch
block from a predefined list of 77 possible blocks. Each step in the program is
defined by a block. A block defines a syntactic frame with an action and a list of
arguments (e.g., the block walk requires one argument to specify the destination).
To simplify the search for blocks they are organized according to 9 broad action
categories, communicate, other, body manipulation, cleaning, food, look, electronics,
object manipulation, movement and a special block for missing actions.
This is how a description is made:

Figure 2: a) Description provided by a worker. b) User interface showing the list
of block categories and 4 example blocks, c) Example of composition of a block by
adding the arguments. Each block is like a Lego piece where the user can drop
arguments inside and attach one block to another. d) Final program corresponding
to the description from (a).
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2.2 Dataset Analysis 2 DATA COLLECTION

2.2 Dataset Analysis

They collected 1814 descriptions from which they were able to obtain 1703 pro-
grams. Some of those programs contained the special block for missing actions.
They removed those programs, resulting in a total of 1257 unchecked programs.
They finally selected a set of tasks and asked workers to write programs for them,
obtaining 1564 additional programs. The resulting 2821 programs form their
ActivityPrograms dataset. On average, the collected descriptions have 3.2 sentences
and 21.9 words, and the resulting programs have 11.6 steps on average. The 5 most
used atomic actions are walk, grab, find, putback and putobjback and the 5 more
common objects are plate, chair, cabinet, faucet and bed.

Figure 3: 50 most used objects and actions.

The dataset covers 75 atomic actions and 308 objects, making 2709 unique
steps. The diversity of the dataset is done by comparing their programs. They
compute their similarities as the average length of the longest common subsequences
computed between all pairs of programs. They also measure distances between
activities by measuring the distance between programs. The similarity between
two programs is measured as the length of their longest common subsequence of
instructions divided by the length of the longest program.

Finally, to check the completeness of their programs, they asked 5 AMT workers
to rate if a sample of 100 programs is complete, missing a minor step or missing a
big step. Their results showed that 64% of the programs were complete, 28 % were
missing minor steps and 8% were missing crucial steps.
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3 SIMULATION

3 Simulation

3.1 3D Environment

They have created a 3D environment where they can simulate the task with the
agent. This agent will have access to all 3D and semantic information about the
environment, as well as to manually defined animations. With the simulation they
can record the task made by they agents to generated a video dataset.

This simulation was made in Unity3D game engine. This engine provides an
kinematic, physics and navigation models that they can use for the simulation, as
well as 3D models provided by the users though Unity Assets store. In total there
are 4 rigged humanoid models and 357 object instances for each home. For each
class there are 3 differents models. For the navigation they use Unity’s NavMesh
framework, a path planner to avoid obstacles and for the animations RootMotion
FinalIK inverse kinematics package.

3.2 Actions and animation

For every step in the program they need an animation for the corresponding action
in the virtual environment. To do that they must know with object requires for
doing the action and properly animate it. This is an optimization problem, were,
taking in account all steps in the program, the task is to find a feasible path. For
example, if the agent has to type in a keyboard, ideally the agent would type on the
keyboard that is connected to the selected computer.

3.3 Animating Atomic actions

There are a huge variety of atomic actions that repeatedly appear in the database,
but they have programmed the 12 most frequent ones: walk/run, grab, switch-
on/off, open/close, place, look-at, sit/stand-up and touch. Although there is a large
variability in how the actions are done depending on the object. Not only the agent
must be animated, for example, when the agent switch-on the computer an image
is shown in the screen or when a lamp is switched it must light up the room.

3.4 Scenes

Some 3D homes wont have objects that are mentioned in the programs, so they need
to put these in the house. First, they evaluate the possibles locations for the object,
then they put them before trying to execute the program.

3.5 Executing a Program

For the animation of the program they needed:

1. Creating a mapping between the object mentioned in the program and in the
instances in the simulator.
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3.6 Cameras 3 SIMULATION

2. For each step in the program, computing the interaction position of the agent
with respect to an object.

3. Any additional information needed to animate the action, like what hand to
use or the speed of the action.

To do this, they made a tree with all possibilities of assigning game objects to
objects in the program, along with all interaction and attributes. To traverse the
tree they use backtracking.

3.6 Cameras

They placed 6-9 cameras in each room of the home simulation, randomizing the
position, angle and field the of view because it is important for creating a dataset
with diverse video data. During the recording, a random camera that sees the agent
is selected. The camera is kept until the agent is not visible anymore or when the
agent makes and action and there is a camera that captures the action better than
the selected one.

3.7 VirtualHome Activity dataset

In the dataset they collected a lot of types of interactions with different objects.
The ultimate goal is to simulate this actions, but for now they support the 12 most
frequent ones. So, they created another database synthesizing 5,193 programs with a
simple probabilistic grammar, and then each one was described by a human annota-
tor. Finally, they animated the programs in the simulation, generating ground-truth
that allow to train and evaluate the video models. As they use a game engine, the
can extract various information like segmentation, optical flow, depth texture,... as
we can see in 4.

Figure 4: VirtualHome Activity Dataset
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4 FROM VIDEOS AND DESCRIPTIONS TO PROGRAMS

4 From Videos and Descriptions to Programs

The principal task that they want to cover is to generate a program for the activity
from either a natural language description or a video demonstration. This task can
be seen as a translation problem. To perform this task they adapted the seq2seq
model and train it with Reinforcement Learning.

The model consists in two Recurrent Neural Network’s, one encodes the input
in a hidden vector representation, and the other decodes, generating one step of the
program. For the encoder they use Long Short-Term Memory.

Figure 5: Encoder-decoder LSTM for generating programs from natural language
descriptions or videos

4.1 From Description to Programs

If the input is a description, they encode each of the words using Word2vec and feed
the result to the LSTM encoder and then they use a LSTM decoder to generate
the program. This predicts an instruction at every time step by predicting his
embedding. The model is trained with cross-entropy loss at each time step. Then
they treat the program generation as an Reinforcement Learning problem. They
use policy gradient optimization, a type of RL, with two rewards:

1. rLCS(ws, g). For RL training, where ws is the sample program and g the
ground-truth one. This generate the normalized LCS metric (length of the
common subsequence) between the two program to ensure that the program
is semantically correct.

2. rsim(ws). From the simulator. Measures whether the generated program is
executable or not.

The total reward is the following: r(ws, g) = rLCS(ws, g) + α rsim(ws)

4.2 From Videos to Programs

To convert the videos into programs first they made a video dataset. To do that, they
simulate the program in the environment choosing a random home, a random agent,
adding multiple objects in the apartment and cameras as described in the previous
section. It is similar like with the description’s but instead of using Word2vec they
partition each video into 2-second clips and train a model to predict the step at the
middle frame. For that, they use DilatedNet, that gives the semantic segmentation
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of each frame and with Temporal Relation Network predicts the embedding of an
instruction. With that they can obtain the likelihood of each instruction. Then, the
prediction is used as input to the RNN encoder for program generation.

5 Conclusion

They collected a large knowledge base of how-to for household activities specifically
aimed for robots. The dataset contains natural language descriptions of activities
that they then transform into programs that are represented as a sequence of steps.
Those programs are unique because they contain all the necessary steps to perform
the activity correctly. They can introduce those programs into the 3D simulator
that they created (VirtualHome) in order to create a large video activity set. They
also propose a model that infers a program from either video or text description,
this way new robots may be driven by natural language or video demostration, at
least that is the intention that they have.

They provide a Python API for communicate with the simulator. This API is
easy to use as is well documented with some examples and one demo that explains
the basics to use it. Although we didn’t have mayor problem’s using it, when it tries
to generates a video, it always raises an error, so we had to made it manually with
the images it generated. For now, the simulator is not perfect, it has some problems
with the animations, but we think that it is a good idea to test it in a 3D virtual
environment first before taking it to a real environment.
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6 APPENDIX

6 Appendix

.1 seq2seq model

This is a method of encoder-decoder based machine translation, taking an input of
sequence with a tag and an attention value. This can be implemented using two
RNN, although it is more common to use an advanced version like LSTM.

.2 Reinforcement Learning

It is a Machine Learning area where an agent is situated in a given environment
and has to make a sequence of decisions. For each decision it receives an reward
or punishment from the environment. The objective is to maximize this cumulative
rewards. The environment is typically formulated as a Markov decision process.

.3 Recurrent Neural Network

It is a class of artificial neural networks where connections between nodes form a
directed graph along a temporal sequence. It is used in task like speech recognition,
language translation or stock predictions. This class suffers from short-term memory,
that is caused by the vanishing gradient problem. In short, this problem is created in
the back propagation of the neural network. Each node calculates it’s own gradient,
if it is small, the previous layer will fail to learn because the gradient will get smaller
in each layer. To solve this, there are two architectures, LSTM or GRU.

.4 Long Short-Term Memory

It is an artificial recurrent neural network architecture. This has feedback connec-
tions, resolving the short-term memory problem from RNN’s. It can procces single
data points (like images) and entire sequences of data (speech or video). LSTM is
used in task like speech recognition, speech synthesis or text generation.

.5 Word2vec

It is a group of related models that are used to produce word embeddings. Takes a
input of a large corpus of text and produces a vector space.
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