
University of the Basque Country

Deep Reinforcement Learning in PyTorch

Unai Lizarralde Imaz

Ferran Tudela Garćıa

October 8, 2019

Ferran Tudela Garćıa Unai Lizarralde Imaz

Contents

1 Introduction 3

2 Implemented Algorithms 3
2.1 Policy Gradients . 3

2.1.1 A2C . 4
2.1.2 PPO . 4

2.2 Deep Q-Learning . 5

3 PyTorch 6
3.1 Library’s algorithms results . 6

4 Contributions 8

5 Conclusions 8

References 9

Page 2 of 9

Ferran Tudela Garćıa Unai Lizarralde Imaz

1 Introduction

In an ordinary human environment, the individual‘s growth and learning process are
carried out through getting accustomed to the surrounding and the various situations that
need to be overcome. For a machine, this learning process is a precise method that requires
some standardized steps for developing knowledge and the capability to respond to various
perceptions with it. In this scope, reinforcement learning is a method for acquiring the
necessary intelligence to tackle with the task at hand very closely to how a human being
performs his learning in the different stages of life; that is to say, when a human learns
how to do a labor correctly, also learns the actions that should be taken to successfully
achieve the desired result, and optimizing the set of actions depending the situation to
move from one state to another is the basis of reinforcement learning.

In order to represent the states and actions to reach such states, a clear and well-
organized structure is required. For such purpose, the learning process will be based on
deep learning techniques to generate an artificial neural network. This way, optimizing
and assigning the correct action to the right perception is the key to learning and following
a reinforcement learning method. The learning process can be divided into three essential
parts, namely, repetitively taking actions in a loop, not being told which actions optimize
the output and attempt to approach the closest path of actions that maximize the reward.

Therefore, in this report we will be including the several approaches (algorithms) that
are available to learn with the use of deep reinforcement learning in PyTorch. In each of
the types of algorithms covered, an example will be provided to understand both theory
and work areas in which to apply it.

2 Implemented Algorithms

For the wide array of problems present to solve through Artificial Intelligence and Ma-
chine Learning, several approaches based on the parameters and specifics of the problem
are examined to choose the best one. In that regard, algorithms based on Deep Reinforce-
ment Learning are constructed to adapt to the environment of the problem using the most
convenient approach.

These algorithms train an agent to learn how to perform actions in an environment
with the purpose of obtaining the maximum reward possible out of each action. Therefore,
these algorithms take the agent through a learning experience of repetition, placing the
agent in a specific situation on the environment (state), for which it has to take the best
decision (action) to advance in the most profitable (reward) way. For instance, maximizing
the score obtained in a game could be a reward to pursue for which the taken actions should
have as the objective increasing that score in the short and long term for each stage of the
game.

In the next sections, these different types of approaches will be showcased and, in each
one of them, some of the algorithms are going to be presented to give contrast to the
diverse philosophies of design found in them.

2.1 Policy Gradients

Policy gradient is an approach to solve reinforcement learning problems. The goal
of reinforcement learning is to find an optimal behavior strategy for the agent to obtain
optimal rewards. The policy gradient methods target at modeling and optimizing the
policy directly.

Page 3 of 9

Ferran Tudela Garćıa Unai Lizarralde Imaz

2.1.1 A2C

A2C (Advantage Actor-Critic) is a synchronous, deterministic version of A3C (Asyn-
chronous Advantage Actor-Critic). This method, like A3C, focuses on parallel training.
The main difference with A3C, is that uses a coordinator that waits for all the parallel
actors to finish their work before updating the global parameters, and then in the next
iteration, parallel actors starts from the same policy. This solves the issue with A3C,
that sometimes the thread-specific agents would be playing with policies of different ver-
sions and therefore the aggregated update would not be optimal. A2C can utilize GPUs
more efficiently and work better with large batch sizes while achieving same or better
performance than A3C.

Figure 1: The architecture of A3C versus A2C [1].

2.1.2 PPO

PPO (Proximal Policy Optimization) is a simplification of the TRPO (Trust Region
Policy Optimization) policy gradient algorithm. Where TRPO tries to solve this problem
with a complex second-order method, PPO is a family of first-order methods that use a
few other tricks to keep new policies close to old. PPO methods are significantly simpler
to implement, and performs as well as TRPO.

It uses two policy networks, one that contains the current policy to improve, and a
second that contains the last policy used. The reward is denoted by the probability ratio
between the old and the new policy.

To improve training stability, instead of imposing a hard constraint, avoids parameter
updates that change the policy too much at one step, and formalizes the constraint as a
penalty in the objective function.

Without a limitation it would lead to instability with extremely large parameter up-
dates and big policy ratios, for that reason a constraint is imposed, that forces to stay
within a small interval around 1. Therefore, we lose the motivation for increasing the
policy update to extremes for better rewards.

When applying PPO on the network architecture with shared parameters for both
policy (actor) and value (critic) functions, in addition to the limited reward, the objective
function is augmented with an error term on the value estimation and an entropy term
that encourages sufficient exploration.

Page 4 of 9

Ferran Tudela Garćıa Unai Lizarralde Imaz

2.2 Deep Q-Learning

The concept behind Q Learning lies in knowing the current state-action‘s immediate
reward and the long term maximum benefit that could be obtained, which is estimated
from the previous experience and serves as a guide for future-proof. In the core, Q-value is
the main focus of the Q learning process, that is to say, this function projects a mapping
from pairs of states and actions to the associated reward for performing such action in that
specific state. In a nutshell, the aim of this Q Learning method is to determine the best
sequence of actions to achieve the highest reward posible out of each state, and to stockpile
the results acquired from each run for future reference as experience grows steadily.

Briefly, there are two components that are affected by the current state and action,
namely, the reward of performing action “a” in a state “s” and the prediction of the reward
in the long run if that action is done in that state. The basic formula that connects all
these factors together is shown ahead:

Q(S,A) = R(S,A) + γmax
A

Q(S′, A)

Q stands for the Q-value of action “a” being undergone in state “s”. As explained
before, r is the immediate reward; whereas Q is once again the Q-value of the next state
after having taken the action in the current one. However, this time the best possible
action is considered to be chosen for the following state to optimize the reward. More-
over, a parameter decides how influential should the future circumstances be, reducing its
contribution accordingly. This parameter serves as the coefficient to restrict how reliable
the gathered experience already is.

All in all, the experience is key for the agent to learn progressively in the good direction;
unfortunately, the massive size of the problem to solve has direct impact on how much
time and space will be required for the agent to earn enough experience for effectively
tackle with the problem. In these particulars, a much more efficient form of continuous
learning is required though. For that end, a deep learning approach using machine learning
and neural networks provide tools, methods and predictive models to carry out the task
successfully. Specifically, for deep Q-learning, a neural network representation is used.

Figure 2: Difference in perspective between Q-learning and Deep Q-learning methods

Page 5 of 9

Ferran Tudela Garćıa Unai Lizarralde Imaz

A deep Q-learning neural network (DQN) takes the state as the input, unlike with
Q-learning were both the state and the action are the input for the function, and going
through neural layers the outputs include every Q-value approximated for each available
action in the given state. Therefore, the training process has the objective of refining the
Q-values produced by the DQN in order to be as close as possible to the desired result.
The notion of experience is still prominent, but, this time around, the experience is the
source for adapting to the specifics of the problem the DQN for it to predict Q-values with
the best of the estimations. With this method, the use of a DQN effectively reduces the
overall time required to train the agent with the sophisticated inclusion of neural networks
into the equation.

This way, the refinement of the Q-values is the main objective towards the best possible
reward. For reaching that end, the next recurrence includes all the necessary parts to the
fluctuations of each of the Q-values, which is the experience to improve the performance
for the selected task at the very end.

Q(St, At)←− Q(St, At) + α(Rt+1 + γmax
A

Q(St+1, A)−Q(St, At))

As it can be observed, to the already computed Q-value for action-state pair, a mod-
ification, standardized with the parameter alpha, is produced with the target Q-value’s
(the immediate reward R and the best action for maximizing the Q-value for the next
state) and the already computed Q-value’s difference. A similar scenario as looking for
the gradient of the function through recurrently approximating it. In few words, the ob-
jective is to get as close as possible to the target value from the predicted value using the
neural network and giving the corresponding values to the parameters depending on the
final results (experience) after observing the evolution through states.

3 PyTorch

PyTorch is an optimized tensor library for deep learning using GPUs and CPUs in
Python. Its main advantage compared to other libraries, such as Numpy, is that it is
ready to use not only the CPU to perform the computations required to manage data, but
also the GPU. Ultimately, this hybrid optimization allows for a powerful library consisting
of highly efficient functions and utilities for deep learning.

Owing to its efficiency in computations and embedded properties to be available in
several platforms (PyCharm for instance), it is considered to be one of the most reliable
frameworks in the data scientist community. Although, alternatives exists, namely, Ten-
sorFlow as its greatest competitor, it still holds itself and receives constantly updates that
further expand its capabilities.

The library is coded in C++ to reach the peak performance. What’s more, it has
already included the possibility to use a front end C++ environment to develop in line
within the library functions. This further increases the adaptability, reliance and integra-
tion of new utilities on the library. Therefore, it is not far-fetched to consider it as one of
the most versatile libraries in the deep learning area.

All the previously presented algorithms are available in PyTorch, and in order to
showcase its functionality, results obtained in our tests are going to be included.

3.1 Library’s algorithms results

To try and test the algorithms improvements that provides rlpyt, a initial setup is
required. This library currently only have support for Linux and Mac, and only have

Page 6 of 9

Ferran Tudela Garćıa Unai Lizarralde Imaz

partial support for Windows. The WSL(Windows Subsystem for Linux) console can be
used to install and run the library. But, using WSL has a drawback, it requires more
configurations and more steps for some features to work.

The library provides some examples that uses the Atari environment, which is already
included with the repository and also have support for mujoco and gym environments. It
is also compatible with a library called viskit [2], that allows to generate graphs of the data
obtained from the neural network.

After running the examples and observing the result, it can be said that, depending
on the type of the problem, one algorithm can perform better than another. This can be
observed when comparing the multiple algorithms applied to the different Atari games.

After almost over 3M steps the returned values graph started looking like the one
showed in the rlpyt white papers.

Figure 3: A2C algorithm

Compared with the graph of our A2C algorithm with the graphs of the papers, we can
see that the section matches.

Figure 4: Policy gradient algorithms

Page 7 of 9

Ferran Tudela Garćıa Unai Lizarralde Imaz

4 Contributions

Reinforcement Learning is a field of constant evolution and adaptation to different
situations that require close-to-human behaviour to complete a task successfully. The
power of Deep Reinforcement Learning is that, unlike a common imperative approach
where you decide rigidly what kind of actions are going to be taken, the agent learns
directly how to act through a learning process from scratch and, thanks to that, there is
no more versatile method to solve a wide array of problems than teaching directly how to
do it from attempting it over and over again.

Moreover, Deep Reinforcement Learning is one of the fields of study that requires pro-
fessionals that are ready to immerse and research thoroughly for even more sophisticated
algorithms to bloom. This has led to a huge rise in the work occupation of data scien-
tist, consequently, increasing the demand of it. For that reason, working in this area of
research in Machine Learning and Artificial Intelligence is not only on the top of the list
for its high priority but also profitable, which ultimately will only push even further the
interest to pursue this work area. Moreover, enterprises are investing loads of money in
the development of new technologies and software that improves the already established
state of the art and proposes new ways to fulfill the task following the paradigm of deep
reinforcement learning.

In case of PyTorch, this library is built-in Anaconda and available for the use and
the improvement to everybody. Thanks to it, data scientists, enthusiasts, teachers and
students have found a powerful framework to work and experiment, as well as a peerless
opportunity to delve into deep learning with a stable and ever expanding library.

5 Conclusions

All together, Deep Reinforcement Learning has proved itself to be one of the most
groundbreaking innovations at this very moment. Meaning that, since its various appli-
cations have improved the self-learning capabilities of machines and artificial systems, the
relevancy and long lasting presence of its utility are bound to be of great use in solving
problems with a superb ability and precision that far surpasses that of an human being.

The results we have obtained from testing and carrying out several attempts to check
the diverse algorithms presented in PyTorch for deep reinforcement learning have helped
us to understand both how efficiently the library works under heavy workload and the
close relationship with the human learning process that these algorithms share. All in all,
it has been a satisfying experience and we have learnt plenty from it.

As a final note, we have been involved in a research process so as to gather information
and knowledge about deep reinforcement learning, which has, as a result of exploring the
vast sea of content that the Internet provides, illustrated us the hardships of selecting
information carefully and from reliable resources.

Page 8 of 9

Ferran Tudela Garćıa Unai Lizarralde Imaz

References

[1] Lilian Weng. Policy gradient algorithms. https://lilianweng.github.io/lil-log/
2018/04/08/policy-gradient-algorithms.html.

[2] viskit. https://github.com/vitchyr/viskit.

[3] Ankit Choudhary. A hands-on introduction to deep q-learning using ope-
nai gym in python. https://www.analyticsvidhya.com/blog/2019/04/

introduction-deep-q-learning-python/.

Page 9 of 9

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://github.com/vitchyr/viskit
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

	Introduction
	Implemented Algorithms
	Policy Gradients
	A2C
	PPO

	Deep Q-Learning

	PyTorch
	Library's algorithms results

	Contributions
	Conclusions
	References

