
1

GGame ame OOriented riented
MMulti ulti AAgent gent SSystem, ystem,

based on based on JJade and ade and JJasonason
Derived and adapted from material of

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n. 0622 Valencia (Spain)
Antonio Barella Álvarez

email: tbarella(at)dsic(dot)upv(dot)es
Professor Vicente J. Botti Navarro
email: vbotti(at)dsic(dot)upv(dot)es
Dr. Carlos Carrascosa Casamayor

email: carrasco(at)dsic(dot)upv(dot)es

2

Presentation

 General overview
 JGOMAS Description

3

 Agent platform for simulations and
videogames on a 3D environment
 Cooperative and competitive environment
 Goal: to improve the individual and colective behaviour

 Game: Capture The Flag - CTF

 Basically …

 Two teams: ALLIED vs. AXIS …

 … with different goals …

 … within a virtual environment

4

 There is a finite number of agents
 There is also a time limit
 Each agent belongs to one side:

 Allied
 Axis

 Allied agents must go to the base of the Axis, capture
the flag, and take it to its base

 Axis agents must defend the flag and, if captured,
return it to its base

5

 Architecture

 Agent Taxonomy

 Execution Loop

 Tasks

 Interface (Jason API)

 Communication

6

 Architecture: agent platform

7

 Architecture: render engine

8

 Agents taxonomy

9

Manager

 Control the state of the game:
 Keeps the information of all objects and sends it to

the viewer
 Management of game logic

 Life cycle management
 Coordination and management of agent services
 Current state of the game
 Deal with the requests of the agents regarding the

environment (shoot, look, ...)
 Statistics

10

Troops

 There are three types of roles defined:
 Soldier: provides support - CallForBackup CFB
 Medic: provides treatment - CallForMedic CFM
 FieldOps: provides ammunition - CallForAmmo CFA

 An agent assumes a single role during the whole game
 Each role has some characteristics and offers certain

services. It has a basic behavior in JASON that should
be improved.

11

Execution loop

 Each agent executes an FSM:
 STATE_STANDING
 STATE_GOTO_TARGET
 STATE_TARGET_REACHED

 FSM is used to perform tasks:
 Start (Launch)
 Development (Execution)
 Final (Action and Destruction)

 The highest priority task is always selected

12

Execution loop

13

Execution loop

14

Execution loop

15

Execution loop

16

Execution loop

17

Task examples

!add_task(task(TaskPriority, TaskType, Agent, Position, Content))
 Priority: Priority of the task

• The highest priority task is always selected
• It is possible to redefine the priority of each type of task
• The tasks are executed by the system, not the user!

 TaskType: Task type
 Agent: agent associated with the task
 Position: Position where to carry out the task
 Content: Possible additional content

!add_task(task(1000, "TASK_GET_OBJECTIVE", M, pos(X, Y, Z), ""));

18

Main tasks

 TASK_GIVE_MEDICPAKS: A medic must generate medipacks in a
particular place (the current position of the agent who asked for
medicines).

 TASK_GIVE_AMMOPAKS: A fieldops must generate packets of ammo
in a particular place (the position of the agent who asked for ammo).

 TASK_GIVE_BACKUP: A soldier should go to help a teammate to a
particular place (the position of the agent who asked for help).

 TASK_GET_OBJECTIVE: An ALLIED agent must go to the starting
position of the flag. If he manage to grab the flag, the agent goes back
to his home base.

 TASK_GOTO_POSITION: The agent must go to a specific location.

 ...

19

Interface (Jason API)

 jgomas.asl : non-modifiable behavior of the agents

 jasonAgent_ALLIED.asl
 jasonAgent_ALLIED_MEDIC.asl
 jasonAgent_ALLIED_FIELDOPS.asl
 jasonAgent_AXIS.asl
 jasonAgent_AXIS_MEDIC.asl
 jasonAgent_AXIS_FIELDOPS.asl

20

Interface (Jason API): agent beliefs

 tasks(task_list) : Contains the list of active tasks of the agent.
 tasks([task(1000,"TASK_GET_OBJECTIVE","Manager",pos(224,

0,224),""),task(1001,"TASK_GIVE_MEDIPAKS","A2",pos(204,0,2
28),"")])

 fovObjects(object_list) : Contains the list of objects currently
seen by the agent. The structure of an object is:

[#, TEAM, TYPE, ANGLE, DISTANCE, HEALTH, POSITION].
 Example: [1,200,1,0.58,14.76,78,pos(214,0,219)], the object 1 of

the team 200 (AXIS), type 1 (agent), with angle 0,58, with a
distance of 14,76, a health 78 and its position is pos(214,0,219)

 Note: The TEAM values are: 100 (Allied), 200 (Axis), 1003 (flag)

21

Interface (Jason API): agent beliefs

 state(current state) : indicates the state of the agent in his state
machine: standing (selecting which task to do or waiting),
go_to_target (going to its next target), target_reached (it has
reached the target), quit (has to finish).

 my_health(X) : Stores the health of the agent. The initial (and
maximum) value is 100. When this value reaches 0, the agent
dies.

 my_ammo(X) : Stores the amount of bullets of the agent. The
initial value is 100.

 my_position(X,Y,Z) : Stores the last position known by the
agent.

22

Interface (Jason API): plans

 !perform_look_action : this objective is invoked when the agent looks
around and update the list of surrounding objects fovObjects(L). It would
be necessary to implement the plan associated to the creation of this event
to be able look what is around.

 !perform_aim_action : This objective is triggered if there is an enemy to
aim, which can be used to take a decision about what to do with the aimed
agent. An easy implementation of the plan is available. It is interesting to
improve this plan to take a more refined decision about who to aim.

 !get_agent_to_aim : This objective is invoked after !perform_look_action,
and it would be used to decide if there is any enemy to aim. An easy
implementation of the associated plan is available. It is interesting to
improve the mentioned associated plan to take a more refined solution
about who to aim.

23

Interface (Jason API): plans

 !perform_no_ammo_action : This objective is triggered when the agent
shoots and has no ammo. It is necessary to implement the associated plan
to take a decision. For example, to run away.

 !perform_injury_action : This objective is triggered when the agent is
shot. It is necessary to implement the plan associated to the creation of
this event to take a decision. For example, run if the agent has a low life
value.

 !performThresholdAction : This objective is triggered when the agent
has less life or bullets than the thresholds my_ammo_threshold(X) and
my_health_threshold(X). An easy implementation of the associated plan is
available, which asks for help to medics or fieldops of his team. It is
interesting to improve the plan to take a more refined solution.

24

Interface (Jason API): plans

 !setup_priorities : This objective is triggered during agent initialization to
fix agent task priorities. Each agent has its own priorities. A simple
implementation is available. It is interesting to modify it to add new tasks or
modify the priorities to have agents that behave in a different way.

 !update_targets : This objective can be used to update the tasks and its
priorities. It is invoked when the agent changes to the standing state and
has to choose a new task among the available ones. It is necessary to
implement the plan associated to the creation of this event.

25

Communication

 Should help agent coordination
 No communication (implicit): coordination is achieved

by sensing the environment. When an agent looks
around itself the objective !perform_look_action is
triggered. By rewriting the associated plan it can be
decided what to do according to the perception.

 With communication (explicit): In this case it is used
the message passing using the internal action

.send_msg_with_conversation_id

26

Communication

 Example: A1 wants to send a message to its team
telling them to go to (to help, coordinate, regroup...)

...

?my_position(X,Y,Z);

.my_team("AXIS", E1);

.concat("goto(",X, ", ", Y, ", ", Z, ")", Content1);

.send_msg_with_conversation_id(E1, tell, Content1, "INT");

27

Communication

 Following the same example, the rest of agents of the
team could have a plan with this shape:

+goto(X,Y,Z)[source(A)]

<-

.println("Received a goto message from ", A);

!add_task(task("TASK_GOTO_POSITION", A, pos(X, Y, Z), ""));

-+state(standing);

-goto(_,_,_).

28

 Lab 0 with JGOMAS (1)
 Visit JGOMAS site:

 http://gti-ia.dsic.upv.es/sma/tools/jgomas/index.php
 Download and install

 jgomas-2.0.1.zip (jason version)
 Unity 3D Render Engine (also older render)

 Linux, mac, windows

 Play a match with the default configuration
 Change default parameters (*.bat or *.sh)
 Revise code *.asl
 Configure Eclipse …
 ...

29

 Lab 0 with JGOMAS (2)
 Perform different executions with different numbers of

agents, classes and maps!
 3 allies vs. 3 axis: 1 soldier, 1 medic and 1 fieldop
 6 allies vs. 3 axis (allies should win)
 3 allies vs. 6 axis (axis should win)
 Test the maps map_01, map02, map_03, map_04 ...
 Modify the duration of the game
 The belief debug(X) allows to change the verbosity of the agent (its

value is between 1 and 3), try changing the verbosity
 ...

30

 Lab 0 with JGOMAS (3)
 Revise Jason JGOMAS Manual.pdf
 Revise *.asl code
 Start Homework3
 ...

http://gti-ia.dsic.upv.es/sma/tools/jgomas/archivos/documentation/Jason%20JGOMAS%20-%20Manual%20-%20english.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

