Providing First-Order Reasoning Support to
Large and Complex Ontologies
Technical Report T007/ WP6§

Version DRAFT

%Also submitted to the Journal of Web Semantics.

Authors: Javier Alvez!, Paqui Lucio!, German Rigau!
Affiliation: (1) EHU

KNOWLEDGE YIELDING ONTOLOGIES FOR TRANSITION-BASED ORGANIZATION
ICT 211423

First-Order Reasoning with SUMO

2/83

Grant Agreement No. ICT 211423

Project Acronym KYOTO

Project full title Knowledge Yielding Ontologies for
Transition-based Organization

Funding Scheme FP7 - ICT

Project website http://www kyoto-project.eu/

Prof. Dr. Piek T.J.M. Vossen
VU University Amsterdam
Project Coordinator Tel. + 31 (0) 20 5986466
Fax. + 31 (0) 20 5986500
Email: p.vossen@let.vu.nl

Document Number Technical Report T007/ WP
Status & version DRAFT

Contractual date of delivery March 18th, 2010

Actual date of delivery April 28, 2010

Type Report

Security (distribution level) Public

Number of pages

WP contributing to the deliberable WP6

WP responsible Christiane Fellbaum

EC Project Officer Werner Janusch

Authors: Javier Alvez!, Paqui Lucio!, German Rigau'

Keywords: Knowledge Representation, Ontologies, Knowledge Bases, Automatic
Reasoning, Deduction, Inferencing

Abstract: In this paper, we summarize the results produced, by using first-order
theorem provers as inference engines, for adapting a large and complex ontology to
allow for its use in formal reasoning. In particular, our study focuses on provid-
ing first-order reasoning support to SUMO (Suggested Upper Merged Ontology).
Our contribution to the area of ontological formal reasoning is threefold. Firstly, we
describe our procedure for translating SUMO from its original format into the stan-
dard first order language. Secondly, we use first-order theorem provers as inference
engines for debugging the ontology. Thus, we detect and repair several significant
problems with the axiomatization of the SUMO ontology. Problems we encountered
include incorrectly defined axioms, redundancies, non-desirable properties, and ax-
ioms that do not produce expected logical consequences. Thirdly, as a result of the
process of adapting the SUMO ontology, we have discovered a basic design problem
of the ontology which impedes its appropriate use with first order theorem provers.
Consequently, we also propose a new transformation to overcome this limitation. As
a result of this process, we obtain a validated and consistent first order version of
the ontology to be used by first-order theorem provers.

KYOTO: ICT-211423

April 28, 2010

First-Order Reasoning with SUMO 3/E3

Contents
1__Introduction 7
[2_Suggested Upper Merged Ontologyl 9
|3 First-Order Language and K]:]:j 10
4 First-Order Theorem Proving 12
|5 _Translating Second-Order Features of SUMO | 14
5.1 First Sterl 14
5.2 Second Step: Row Variabled 16
6 Detecting Inconsistencied 18
[7_Unfinished Definitiond 22
IR Translation of Tvpe Information 23
I8.1 _ Unexpected Results from Tvpe Information in SUMO! 23
I8.2 Translation of Tvne Information in SUMQ into First-Order Formulad . . . 26
.3 Tncompatibility of Type Information with the Structure of SUMO]L 28
9 Adimen-SUMO: Our Proposal to Use SUMO with FOL-Theorem Provers 29
[10 Conclusions 30
[11_Acknowledgement] 31
|JA_Analyzing Traces of FOL-Theorem Proversd 35
IB_Using Adimen-SUMO for Automated Reasoning 35
IC_Translating SUMO into FOL-Formulae: A Detailed Exampld 36
[D_Resources 41

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO

4/83

KYOTO: ICT-211423

April 28, 2010

First-Order Reasoning with SUMO

5/83

List of Tables

KYOTO: ICT-211423

April 28, 2010

First-Order Reasoning with SUMO

6/E3

KYOTO: ICT-211423

April 28, 2010

First-Order Reasoning with SUMO 7/E3

1 Introduction

Recently, the Semantic Web community has become very interested in having practical
inference engines for foundational ontologies [7; P6; 33]. In fact, automated reasoning with
ontologies is an important problem with a large practical impact. A well-known necessary
condition for enabling the automated treatment of knowledge — in particular, automated
reasoning with ontologies — is that ontologies must be written in a formal language whose
syntax and semantics are both defined mathematically. Automated reasoning uses me-
chanical procedures to obtain a large body of deducible knowledge that can be inferred
from a small and compact modelization. Deduction is the logical action of obtaining the
statements that are true in all models of an axiomatization (or formal description).

Choosing as ontological language a known logical formalism for which automated rea-
soners already exist provides (all at once) the formal characterization of the language and
the reasoning mechanism. Another significant feature of interest for formal ontologies is
expressiveness. Since an ontology is a conceptualization of a certain domain of interest,
the language should allow to express the properties that characterize that domain. It is
also well-known that inference engines become increasingly complex as the underlying logic
languages become more expressive. As a consequence, the trade-off between expressiveness
and reasoning efficiency is a key point for the design of formal ontologies.

First-order logic (FOL) is a very well-known and quite expressive formalism and, lately,
impressive progress has been made in first-order automated reasoning. In particular, there
is an important collection of existing first-order theorem provers. For instance, the CASC
competitionﬁ (see [28; B7]) evaluates the performance of sound, fully automatic, classical
FOL Automated Theorem Prover systems on a bounded number of eligible problems,
chosen from the TPTP Problem Libraryfl (see [36]).

Ontological reasoning within the framework of first-order ontologies has been a very
active area of research over the last few years. For instance, the work presented in [38]
explores the feasibility of using first-order theorem provers to compute the inferences that
DL (Description Logic) reasoners cannot handle. Since DL is a subset of the guarded
fragment of first-order logic, suitable work on translations and interesting experiments are
reported. In [29], the authors provide a translation of the Cyc ontology into FOL and report
experimental results using different theorem provers (as well as the Cyc inference engine) for
reasoning in the resulting first-order theory. The authors of [T6] give many interesting hints
for adapting the existing general purpose first-order theorem provers in order to query and
check the consistency of first-order ontologies. The authors also provide two examples of
inconsistencies that were detected in SUMOH The main objective of [is to use existing
logic programming model generation systems for checking the consistency of first-order
ontologies. To this end, a translation from first-order ontologies into disjunctive logic
programs is proposed. Finally, in [27], the authors report some preliminary experimental
results evaluating the query timeout for different options when translating SUMO into

2http://www.cs.miami.edu/~tptp/CASC/
Shttp://www.cs.miami.edu/~tptp/
“http://www.ontologyportal.org/

KYOTO: ICT-211423 April 28, 2010

http://www.cs.miami.edu/~tptp/CASC/
http://www.cs.miami.edu/~tptp/
http://www.ontologyportal.org/

First-Order Reasoning with SUMO 8/E3

FOLA

Recently, this translation has been included in the CASC Competition as the SUMO
Challenge. An evolved translation can be found in the TPTP Library. In the sequel, we
refer to the latter translation as TPTP-SUMOf

In this paper, we report on our experience using first-order theorem provers as inference
engines for reasoning with large and complex ontologies. In particular, our study focuses
on SUMO (Suggested Upper Merged Ontology, see [25]), although this work would have
been very similar working with Cyc [22], DOLCE [T3] or any other large ontologies. First,
we translated SUMO from its native language into a standard first order format. SUMO is
expressed in KIF (see [31]) and the syntax of KIF goes beyond the syntax of first-order logic.
Therefore, our first goal has been to convert a large portion of SUMO into a first-order
theory. Then, we used the first-order theorem provers as inference engines for debugging the
ontology. We summarize the problems we have found and the solutions we have adopted in
this process. When an inconsistency was detected, we used the explanation (or refutation)
provided by the theorem prover to investigate the conflictive axioms. Once the final reason
for the inconsistency was discovered, possible solutions for repairing the consistency were
tested. In following this procedure, we detected several spurious items of knowledge in the
ontology — that is, axioms that do not produce the expected logical consequences — as well
as some non-desirable properties, incorrectly defined axioms, redundancies, etc. However,
as a result of the debugging process, we also discovered a basic design problem in SUMO
which impedes its appropriate use by a first order theorem prover. Thus, we also propose a
further transformation to overcome this limitation. As a result of this process, we obtained
a validated and consistent first order version of the ontology, hereinafter Adimen-SUMO.
This version of the ontology can be used by first-order theorem provers to establish formal
reasoning about the properties and relations of the classes defined by the ontology.

The outline of the paper is as follows. In Section B, we introduce SUMO, the ontology
of interest to this work. Section Bl focuses on the format used for describing SUMO.
In Section Bl we describe the first-order theorem provers that we have used to debug
ontologies. Section Bl explains our approach to translating second-order KIF-axioms into
FOL. Once a FOL fragment of SUMO is obtained, in Section @l we provide, as a summary,
some illustrative examples of the inconsistencies discovered in SUMO by the FOL-theorem
provers. However, in Section [, we show that some parts of SUMO, in its current state,
are of no use for reasoning purposes. In Section B we also describe that, without an
additional treatment, the type information in SUMO does not produce the expected results
(Subsection Bl), and then propose a solution to this problem (Subsection BZ). Then,
in Subsection B3 we introduce the incompatibility of type information and the current
structure of SUMO. Section [introduces our main result: Adimen-SUMO, which is a
consistent translation of SUMO into a FOL-ontology that can be used with FOL-theorem
provers for formal reasoning. Section [[l] summarizes our work. Finally, for the interested

5In fact, as acknowledged by the authors, most of our suggestions are currently part of their translation
thanks to a fruitful collaboration and discussion with them.
Shttp://www.tptp.org

KYOTO: ICT-211423 April 28, 2010

http://www.tptp.org

First-Order Reasoning with SUMO 9/E3

reader, we provide four Appendixes. Appendix [Al gives a detailed example of how to
analyze the traces obtained from FOL-theorem provers in order to debug the ontology and
Appendix [Bl presents another detailed example of the new reasoning capabilities provided
by the FOL-consistent version of the ontology. Appendix[(] provides a thorough description
of the translation of SUMO into FOL-formulae proposed in this paper. The Adimen-
SUMO packageﬁ is described in Appendix

2 Suggested Upper Merged Ontology

SUMO [5] was created by the IEEE Standard Upper Ontology Working Group. Their
goal was to develop a standard upper ontology to promote data interoperability, informa-
tion search and retrieval, automated inference and natural language processing. SUMO
provides definitions for general purpose terms and is the result of merging different free
upper ontologies (e.g. Sowa’s upper ontology, Allen’s temporal axioms, Guarino’s formal
mereotopology, etc.).

SUMO consists of a set of concepts, relations, and axioms that formalize an upper
ontology. An upper ontology is limited to concepts that are meta, generic, abstract or
philosophical. Hence, these concepts are general enough to address (at a high level) a broad
range of domain areas. Concepts that are specific to particular domains are not included in
the upper ontology, but such an ontology does provide a structure upon which ontologies
for specific domains (e.g. medicine, finance, engineering, etc.) can be constructed.

Currently, SUMO consists of about 20,000 terms and about 70,000 axioms when all
domain ontologies are combined. However, in the work reported here, we concentrate on
the upper part of the ontology. That is, on SUMO itself (file Merge.kif, version 1.61) and
the mid-level ontology (file Mid-level-ontology.kif, version 1.87), which consists of about
1,000 terms and 4,000 axioms depending on the particular version

SUMO aims to provide ontological support for an increasing number of different knowl-
edge repositories. For instance, SUMO developers also maintain a complete mapping to
WordNet [25]. WordNet [12] is by far the most widely-used knowledge base. It contains
manually coded information about english nouns, verbs, adjectives and adverbs, and is or-
ganized around the notion of synset. A synset is a set of words with the same part-of-speech
that can be interchanged in a certain context. For example, (student, pupil, educatee)
form a synset because they can be used to refer to the same concept. A synset is often
further described by a gloss, in the case of the above synset “a learner who is enrolled in an
educational institution”, and by explicit semantic relations to other synsets. Each synset
represents a concept which is related to other concepts by means of a large number of
semantic relationships, including hypernymy/hyponymy, meronymy/holonymy, antonymy,
entailment, etc. In fact, WordNet is being used world-wide to anchor different types
of semantic knowledge including WordNets for languages other than English [3], domain
knowledge [20] or ontologies like the EuroWordNet Top Concept Ontology [2.

7Available at http://adimen.si.ehu.es/web/AdimenSUMO.
8Unless explicitly stated, all the examples in this paper are extracted from those files.

KYOTO: ICT-211423 April 28, 2010

http://adimen.si.ehu.es/web/AdimenSUMO

First-Order Reasoning with SUMO 10/E3

Furthermore, SUMO has also been merged with YAGO [35], thus combining the rich
axiomatization of SUMO with the large number of individuals acquired from Wikipedia
[TO]. In fact, as part of the Linking Open Data project [6], YAGO is already integrated
into DBpedia [I8], a large knowledge base of structured information also acquired from
Wikipedia. In this way, SUMO is becoming a potentially very useful resource for improving
the current automated reasoning capabilities of available intelligent web services.

As a matter of fact, the SMO category in the LTB division — first-order non-propositional
theorems (axioms with a provable conjecture) from Large Theories, presented in Batches
— of the CADE ATP System Competition CASC (see [28; 37]) is based on problems taken
from SUMO.

3 First-Order Language and KIF

SUMO is expressed in KIF (Knowledge Interchange Format, see [31]). KIF is a language
that provides for the representation of knowledge about the representation of knowledge.
This allows to make all knowledge representation decisions explicit and permits the in-
troduction of new knowledge representation constructs without changing the format. KIF
has declarative semantics [T4]. It is possible to understand the meaning of expressions in
the language without an interpreter for manipulating those expressions. In this way, KIF
differs from languages that are based on specific interpreters, such as Prolog (which are
confined to Horn clauses) or Pellet (confined to OWL-DL).

Thus, KIF provides for the expression of arbitrary sentences in predicate calculus. In
this sense, KIF is not exactly a first-order language. In fact, KIF can be used to write
FOL-formulae, but its syntax goes beyond FOL. For instance, KIF can also be used to
write second-order formulae, allowing variables representing predicates and quantification
of them. Moreover, KIF allows higher-order predicates — that is, predicates having other
predicates as arguments — and even formulae acting as arguments of predicates. Another
non-first-order feature of KIF are the so-called row variables. These variables are related
to infinitary logic (see [T7]). Row variables allow the use of predicates and functions of
arbitrary arity.

In this section, we give some examples and details of the above-mentioned features of
KIF while introducing the notation of FOL-formulae that we will use in the rest of the
paper. For a complete reference to KIF, the interested reader is referred to [31].

Regarding the KIF syntax, it is worth highlighting that operators are written in prefix
notation and, besides, conjunction of disjunction are n-ary. The only restriction about
names is that variable names always start with a question mark ‘?’, but predicates and
functions can take any name.

With respect to FOL-formulae, we use the standard notation with the following nota-
tional conventions:

e z, y and z (possibly with super-/sub-scripts) are only used for variables.

e Predicate names always start in lower case.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 11/43

e There is no restriction on function names, although their notation is always inherited
from KIF axioms.

Next, we illustrate the capabilities of the KIF syntax by means of some examples. First,
KIF can be used to express FOL-formulae. For example, the following KIF-expression

(forall (7X)
(=>
(p 7X C)
(not (exists (7Y) (q 7Y 7X)))))

corresponds to the FOL-formula

Ve (p(z,C) — =3y q(y,))

where
e C is a constant function symbol,
e p and q are predicate symbols,
e x and y are variables.

However, some KIF-axioms denote properties that cannot be expressed with FOL-formulae.
For instance, the following KIF-axiom

(<=>
(instance 7REL SymmetricRelation)
(forall (?INST, ?INST,)
(=>
(?REL ?INST, ?INST,)
(7REL ?INST, ?INST;))))

does not correspond to any FOL-formula because the variable 7REL acts in the second line
as an individual variable (first argument of the predicate instance), whereas in the last two
lines it is written in the position of a predicate. Obviously, this is not allowed in FOL.
Moreover, axioms are usually considered to be universally closed, which in this concrete
case means that the KIF-axioms can be considered to be prefixed by forall (7REL). The
above kind of formulae are not allowed in FOL, but are permitted in second-order logic.
This second-order feature of KIF is also related to the use of the same symbol as both
predicate and function, assuming an implicit connection between the two uses the same
symbol. In section B, we explain a relaxed interpretation of this second-order feature which
allows to translate many KIF-axioms into FOL-formulas.

Regarding higher-order features, KIF allows to write formulas as arguments of predi-
cates. For example, in the following axiom that expresses a temporal property

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 12/A3

(<=>
(equal (WhereFn ?THING ?TIME) ?REGION)
(holdsDuring ?TIME (exactlyLocated ?THING 7REGION)))

the formula (exactlyLocated ?THING ?REGION) occurs as an argument of the predicate
holdsDuring. This higher-order feature also allows to write axioms with the style of modal
and BDH logics (as introduced in [0]), such as

(=>
(wants ?AGENT ?0BJ)
(desires TAGENT (possesses 7AGENT 70BJ)))

where the formula (possesses 7AGENT 70BJ) is an argument of the predicate desires. There
are well-known translations of some concrete temporal logics into FOL (see, e.g., [T]) which
can be taken into account, in future work, to translate this kind of KIF-axiom into FOL.
However, without a suitable translation, these axioms are syntactically unacceptable to
any FOL-theorem prover. Thus, we currently remove all the axioms in SUMO on which
a formula appears as an argument of some predicate.

Finally, row variables in KIF serve to express properties of relations of any arbitrary
arity. For example, the next KIF-axiom states that if a relation is single-valued then there
exists a unique value that is related (as last argument) to any n-tuple:

(=>
(instance 7REL SingleValuedRelation)
(forall (QROW ?ITEM, ?ITEM,)
(=>
(and
(?REL @ROW ?ITEM,)
(?REL @ROW ?ITEM,))
(equal ?ITEM, ?ITEM,))))

The above (second-order) axiom does not determine the arity of 7REL, which cannot be
expressed using first-order languages. This feature of KIF, when used in its whole expres-
siveness, relates KIF to infinitary logic (see [T7]). A relation that has a non-determined
arity can be taken as a variable relation and, thus, axioms with row variables may also be
considered as a second-order feature of KIF. Also in Section [, we explain how to translate
axioms with row variables into FOL-formulae.

4 First-Order Theorem Proving

In this section, we briefly review the most important aspects of first-order automated
reasoning and the main theorem provers that are related to our work.

9Belief, Desires and Intentions

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 13/43

Automated theorem proving is one of the most well-developed subfield of automated
reasoning. Extensive work has been done developing techniques and tools for automatically
deciding whether a set of axioms is satisfiable or if a goal follows from a set of axioms.
Depending on the underlying logic, the satisfiability problem ranges from decidable (with
different rates of efficiency), semi-decidable or undecidable. First-order theorem proving is
one of the most mature subfields of automated theorem proving. The language of first-order
logic is expressive enough to represent ontological knowledge in a reasonably natural and
intuitive way. There are many fully automated systems that implement different techniques
for first-order theorem proving. Most common techniques of automated theorem proving
are based on refutation. Roughly speaking, this technique consists in proving that a goal ¢
follows from a set of axioms ® by proving that the conjunction ® A—1 is unsatisfiable, under
the premise that ® is satisfiable. Note that any goal (also its negation) follows from an
unsatisfiable (also called inconsistent) set of axioms. Hence, consistency (or satisfiability)
checking is a critical task. According to this approach, consistency is proved by showing
that there is no inconsistency in the set of axioms. Another technique consists in directly
building a model for the given set of axioms. In this case, if there is no model, then we
can decide that the set of axioms is inconsistent. The major drawback of the above two
approaches comes from the fact that the satisfiability problem of FOL is semi-decidable.
As a consequence, on one hand, refutation-based techniques are able to find a refutation
when it does exist. Otherwise, when there is no refutation, the search space could be
infinite, so the system is not able to answer. On the other hand, building a model for a
satisfiable set of axioms may also be an infinite task.

There is a large library of standard benchmark examples — the Thousands of Problems
for Theorem Provers (TPTP) (see [36]) — that has allowed significant progress on the
efficiency and accuracy of the many systems implemented. The TPTP Library is used in the
CADE ATP System Competition (CASC) (see [28; B7]), which evaluates the performance
of first-order theorem provers. In this competition, some of the most successful systems are
Vampire [30] and E-Prover [32] (which are refutation-based automated theorem provers),
and Darwin [4], Paradox [§] and iProver [T9] (which try to find a model for the given
theory). Some other systems, such as MetaProver [34] and SinAY (the winning system
of the SMO category in the 2009 edition of CASC), are based on the above systems,
especially Vampire and E-Prover, but implement different resolution strategies. Apart from
the CASC competition, it is worth mentioning the Mace4 and Prover9 systems, which are
the successors of Mace2 [23] and Otter [24], respectively, and also MiniSat [TT], which is a
successful SAT solver.

In our research work, we have tested (and used) most of the above-mentioned systems,
mainly the Vampire and E-Prover systems. We have translated a subset of SUMO into a
set of first-order axioms which serves as input for the FOL-theorem prover. In general, we
have two options when running a FOL-theorem prover regarding execution time. According
to the first option, there is no time limit. Hence, if the set of axioms in the ontology is
satisfiable, then the system will not terminate. According to the second option, we specify

Ohttp://wuw.cs.manchester.ac.uk/~hoderk/sine

KYOTO: ICT-211423 April 28, 2010

http://www.cs.manchester.ac.uk/~hoderk/sine

First-Order Reasoning with SUMO 1443

a limit on execution time and thus the system always finishes, although the answer could
be ”time limit expired”. In both cases, if the theorem prover finds a refutation, then we
have a formal proof of the existence of an inconsistency in the set of axioms which helps
us debug the ontology.

5 Translating Second-Order Features of SUMO

In this section, we explain how we translate the second-order features of SUMO introduced
in Section Bl into a FOL-formula.

The translation is organized in two steps. In the first step, variables acting as predicates
and symbols that are used as both function and predicate are translated, as described in
Subsection Bl In the second step, the axioms that contain row variables are translated
into FOL-formulae, as explained in Subsection B2l

5.1 First Step

The standard semantics of second-order logic (SOL) interprets an n-ary predicate symbol
by any possible subset of n-tuples of values of the discourse domain. Under standard
semantics, SOL is incomplete. That is, there is no deductive calculus able to derive all
theorems. Since FOL has a complete Calculus it is obvious that SOL, under standard
semantics, cannot be reducible to FOL. However, there is a well-known translation of
SOL into FOL (see [21] for a detailed explanation of this translation) which preserves a
non-standard semantics — called Henkin semantics — that interprets predicate symbols as
any definable set of n-tuples. Therefore, SOL under Henkin semantics is less expressive
than SOL under standard semantics, but it is complete. The basic idea for translating
SOL-formulae into FOL-ones under Henkin semantics is to use a collection of predicates
holds;,, where k > 2 stands for the arity of the predicate Using these predicates, any
atom P(ty,ts,...,t,) where P is a variable is translated into holds, (P, t1,ta,. .., t,).
However, in order to preserve Henkin semantics, an infinite collection of first-order axioms,
called comprehension axioms, should be added to the axiomatization. Roughly speaking,
comprehension axioms axiomatize the predicate holds;. Of course, this is a great limitation
for automated reasoning.

However, we know that ontologies are finite theories over a finite alphabet and the
intended meaning of a second-order axiom like

(<=>
(instance 7REL SymmetricRelation)
(forall (?INST, ?INST,)
(=>

HTts semi-decidability is caused by the inexistence of an algorithm (implementing a complete deduction
calculus) which always finishes stating where its input is or is not deducible.

12Tn old versions of SUMO (until Merge.kif version 1.27), a variable arity predicate holds was used to
express second-order features.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 15/Ma3

(YREL 7INST, 7INST,)
(?REL ?INST, ?INST,))))

is to assert (or infer) the property
Vo Vg (1r(zy, x0) — (22, 11))

for any predicate symbol r defined to be an instance of SymmetricRelation (either directly
or as a logical consequence). For example, if the KIF-axiom

(instance relative SymmetricRelation)

belongs to the ontology, then we should infer that
Va Vo (relative(zy, xo) — relative(xy, xy)).

From a semantical point of view, this translation is equivalent to restricting Henkin se-
mantical structures by considering, as a possible interpretation of predicate variables, only
those relations that interpret some of the predicate symbols of the alphabet, instead of any
relation definable in the domain. In some sense, this means using second-order KIF-axioms
as FOL meta-axioms based on SOL syntax or axiom-schemas. For this purpose, we use
the so-called reflection azxioms, which axiomatize the predicate holds; in a finite way, by
relating each predicate to a single constant symbol. In this way, we can use predicate
symbols as usual, while predicates are replaced with their corresponding constant symbols
when used as terms.

This is the approach that we follow in the first transformation step of our proposal,
which can be described as follows (row variables are treated as standard variables).

1. We add a reflection axiom of the form
Yoy .. Vo, (r(z1,...,2,) < holds, 1 (7', 21, ..., x,))

for each n-ary predicate symbol r in the alphabet of the ontology, where r’ is a new
constant symbol related to 7.

2. Every atom of the form

(?REL ?INST; ... ?INST,)

in any KIF-axiom is replaced with

(holds, {1 7REL 7INST, ... 7INST,).

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 16,43

3. Every occurrence of a predicate symbol r acting as a term is replaced with r’.

The use of a new constant symbol 7’ that is related to each predicate symbol in the ontology

allows us to express reflection using a FOL-formula while retaining its deductive power.
Applying this translation to the previous example of SymmetricRelation, we obtain the

following FOL-formulae (note that the KIF-axioms involved are free of row variables):

VaVy, Yyo ((instance(x, SymmetricRelation) <

(hOlng(l’, Y1, 92) - hOlng(Jf, Yo, yl)))
Va1 Vo ((holdss(relative’, xy, x5) < relative(xy, xa))

instance(relative’, SymmetricRelation)
It is obvious that any first-order theorem prover can infer that
Va Vg (relative(z, xo) — relative(xs, 1))

from the above conjunction of formulae.

In [27], the authors also propose to use predicates holds, in order to translate SOL-
axioms into FOL-formulae. However, their proposal is completely different from ours.
In [27], the proposal is to use the predicates holds; to translate all the atoms. In other
words, they do not restrict the use of predicates holds; to atoms with variable predicates.
Thus, the only predicate symbols in the translated ontology are predicates holds,. This
exhaustive use of predicates holds; makes it unnecessary to provide reflection axioms, but
at the same time theorem provers cannot benefit from the heuristics that are based on the
defined relations.

However, in TPTP-SUMO holds;, are not used since axioms with variables as predicates
are used as axiom schemes. In the translation, the variable predicate is instantiated to
every possible value defined in the ontology, yielding an axiom for each value. In Adimen-
SUMO, we use a more compact representation that is logically equivalent to the one in
TPTP-SUMO.

5.2 Second Step: Row Variables

Regarding the second transformation step, in FOL it is assumed that every predicate/function
symbol is used with just one arity and, besides, predicate and function symbols are dis-
joint. This is just a syntactic restriction which can be satisfied when using FOL-theorem
provers by just conveniently renaming predicates/functions. However, in KIF, some pred-
icate/function symbols are implicitly used with several arities by means of row variables
that can be instantiated to tuples of variables of distinct length. Let us consider the
following set of axioms:

(<=>
(partition @QROW)

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 1743

YV VeoVas (partitiong(xy, x2, x3) <
(exhaustive Decompositions (1, xa, T3) N

disjoint Decompositions(x1, xs, 3)))

YV VaoVesVay (partitiong(zy, xe, 3, T4) <
(exhaustive Decompositiony(xy, xe, X3, T4) A

disjoint Decompositiony(zy, xa, T3, 4)))
partitiong(Entity, Physical, Abstract)

partitiony(Number, Real Number, Imaginary Number,

Complex Number)

Figure 1: Row Variable Elimination

(and
(exhaustiveDecomposition @QROW)
(disjointDecomposition @QROW)))

(partition Entity Physical Abstract)

(partition Number RealNumber ImaginaryNumber ComplexNumber)

The predicate symbol partition is used with arities 3 and 4 in the last two axioms. Thus,
the predicates in the last two axioms are distinct according to FOL. However, the definition
of both predicates (with arities 3 and 4) is given by means of a single axiom (the first axiom
above). This is possible in KIF thanks to the possibility of using row variables.

In TPTP-SUMO, row variables are converted into single variables, where the number of
single variables varies from one to five. However, our approach to translating KIF-axioms
with row variables (into FOL-formulae) uses the following iterative process, which is quite
similar to one of the proposals in [27]. For each predicate symbol r used in some KIF-axiom
with row variables, we proceed as follows [First, we determine all the possible arities of
r. The set of possible arities of a predicate symbol r is given by the arities of atoms with
predicate symbol r that do not contain row variables. Then, every axiom containing atoms
with predicate symbol r» and one row variable is replaced with an axiom for each possible
arity n of . In the new axioms, the arity of the atom with root predicate r has to be n.
For this purpose, we replace the row variable with a tuple of variables of convenient length
according to n and the number of remaining terms in the atom. For example, if r is used
with arity 4 and there are two more terms in the atom that contains a row variable, then
the length of the tuple of variables is 4 —2 = 2. We proceed in this way until we eliminate
all the row variables. Note that, after this transformation, it is necessary to rename the

13The translation of functions symbols follows the same steps.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 18/43

predicate symbols that are used with several arities (if any) due to the above-mentioned
FOL notational convention.

For example, the result of translating the previous set of axioms containing row variables
is given in Figure [l In these axioms, the predicate partition is used with arities 3 and 4
in the second and third axioms, respectively. Thus, the first axiom is replaced with two
axioms, one for each arity of partition. Further, since QROW is the only term in the atom
(partition @QRQOW) of the first axiom, in the new axioms @QROW is replaced with a tuple of 3
and 4 variables, respectively.

6 Detecting Inconsistencies

A FOL-theorem prover allows to detect inconsistencies in FOL-ontologies and, furthermore,
to analyze the trace of the inconsistency proof (refutation) to detect the axiom(s) that is
(are) involved.

In this section, we report on our experience with detecting inconsistencies in SUMO
and provide some illustrative examples.

The simplest inconsistencies we have detected are name clashes. For example, the
constant Gray was used to denote both a coloitd

(instance Gray SecondaryColor)
and a unit of measurd'
(instance Gray SystemelnternationalUnit).

According to SUMO knowledge, SecondaryColor is a subclass of Attribute and Systemelnternational Unit
is a subclass of Quantity. In both cases, the transitive property of subclass should be used

in the inference. Besides, the classes Attribute and Quantity are inferred to be disjoint.

Henceforth, the reasoner detects an inconsistency, because Gray cannot be a common

subclass of two disjoint classes.

After submitting this inconsistency to the developers of SUMO, the inconsistency
was solved in Mid-level-ontology.kif version 1.44 by replacing the above first axiom with
(instance GrayColor SecondaryColor).

Another simple kind of inconsistency comes from the fact that axioms are considered to
be universally closed. Consequently, a wrong name or a forgotten quantifier could cause a
wrong axiom which states a property different to (and, often, stronger than) the intended
one. For example, in the KIF-axiom

(=>
(instance 7RESIDENCE TemporaryResidence)
(not
(exists (7PERSON)
(home ?PERSON ?HOTEL))))

Extracted from Mid-level-ontology.kif version 1.43.
5 Extracted from Merge.kif version 1.36.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 19/43

the variable PHOTEL in the consequent should be 7RESIDENCE or vice versald The wrong
version is equivalent to

VaVy (instance(x, TemporaryResidence) — =3z home(z,y))
whereas the correct version should be:
YV (instance(x, TemporaryResidence) — =3z home(z, x))

Obviously, the former is stronger than the latter. In fact, the inconsistency proof informed
us that this wrong axiom allows to infer that

VyVz —home(z,y)
whenever some instance of TemporaryResidence does exist, as
(instance PalaceHotel TemporaryResidence).
A corrected version of the axiom

(=>
(instance 7RESIDENCE TemporaryResidence)
(not
(exists (7PERSON)
(home ?PERSON ?RESIDENCE))))

prevents the above inference.
A similar example can be found by analyzing the next axiom[]

(=>
(instance ?COMPANY Restaurant)
(exists (7SERVICE ?FOOD)
(and

(instance ?SERVICE CommercialService)
(agent 7SERVICE 7COMPANY)
(instance ?SERVICE Selling)
(instance 7BUILDING RestaurantBuilding)
(located 7SERVICE 7BUILDING)
(patient ?SERVICE ?F00D)
(instance 7F00D Food))))

where the variable ?BUILDING should also be in the scope of the existential quantifier,
likewise the variables 7SERVICE and 7COMPANY. However, the existential quantification of
?BUILDING has been omitted. As a consequence, 7BUILDING is considered to be universally

16 Extracted from Merge.kif and corrected in version 1.22 as suggested to the developers of SUMO.
I"Extracted from Mid-level-ontology.kif and corrected in version 1.19 before we detected it.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 20/E3

quantified and the resulting axiom is too strong in the same sense as in the previous
example. In particular, note that we can infer from the above axiom that

VaVy (instance(x, Restaurant) — instance(y, Restaurant Building))

which allows any arbitrary instance of RestaurantBuilding to be asserted from any arbitrary
instance of Restaurant. The correct axiom is obtained by replacing

exists (?SERVICE ?FOOD)
with
exists (7SERVICE ?FOOD ?BUILDING)

in the second line of the above axiom. This replacement repairs the inconsistency.
An example of another kind of more substantial or conceptual bug that can be found
using theorem provers is given by the following set of axioms%

1L (<=>
(disjoint 7CLASS; 7CLASS,)
(and
(instance ?7CLASS; NonNullSet)
(instance ?7CLASS,; NonNullSet)
(forall (7INST)
(not
(and
(instance ?7INST ?CLASS;)
(instance ?7INST 7CLASS,))))))

2. (<=>
(instance 7ABS Abstract)
(not
(exists (7POINT)
(or
(located 7ABS 7POINT)
(time 7ABS 7POINT)))))
3. (<=>

(instance ?PHYS Physical)
(exists (7LOC ?TIME)
(and
(located 7PHYS 7LOC)
(time ?PHYS ?TIME))))

4. (=>

18 Axioms 1-8 are extracted from Merge.kif version 1.21 and Axioms 9-10 from Mid-level-ontology.kif
version 1.26.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 21 /83

(and
(subclass 7X 7Y)
(instance ?Z 7X))
(instance 7Z ?7Y))

(subclass NonNullSet SetOrClass)
(subclass Region Object)
(subclass Object Physical)
(subclass SetOrClass Abstract)

(

© o N oo

disjoint Indoors Outdoors)
10. (instance Outdoors Region)

From this set of axioms, a theorem prover can deduce its falseness. Analyzing the proof
provided by the system (see Appendix [A]), we extract the following trace:

a. instance(Outdoors, NonNullSet) [1,9]
b. instance(Outdoors, SetOrClass)

2

[4,5
c. instance(Outdoors, Abstract) [4,8,b]
d. Va (—located(Outdoors,x)) 2,¢]
e. instance(Outdoors, Object) 4,6,10]
f. instance(Outdoors, Physical) [4,7,¢]
g. 3z (located(Outdoors,)) 3,f]
h. L d,g]

In summary, Qutdoors is an instance of both Abstract and Physical, which are disjoint
classes, thus yielding an inconsistency. A deeper examination shows that the problem
comes from the fact that he relation instance is inherited through subclass. On one hand,
Outdoors is an instance of Physical because it is also an instance of Region, which is a
reasonable classification. On the other hand, Outdoors is an instance of Abstract because
it is also an instance of NonNullSet. This classification is not as natural as the previous
one. Further, in set theory, the empty set is always disjoint from any other set. Hence, we
decided to replace Axiom 1 with the following onefd

(<=>
(disjoint 7CLASS, ?CLASS,)
(forall (7INST)
(not
(and
(instance ?7INST 7CLASS;)
(instance ?INST 7CLASS;)))))

19As suggested to the developers of SUMO and introduced in Merge.kif version 1.22.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 22 /13

This replacement repairs the inconsistency.

7 Unfinished Definitions

Usually, not all the knowledge described by an ontology is usable for automated reasoning
purposes. Clear examples are axioms that use a predicate that is not entirely axiomatized
in the ontology. We say that this kind of knowledge is essentially descriptive in order
to highlight that is not usable for deduction. In addition, every predicate which uses an
incompletely axiomatized predicate becomes itself incomplete.

Regarding SUMO, an example of descriptive knowledge and its propagation is given
by the predicates partition and disjointDecomposition. The axiomatization of these two
predicates uses the predicate inList, as shown in the following axioms:

(<=>
(partition @QROW)
(and
(exhaustiveDecomposition @QROW)
(disjointDecomposition @QROW)))
(=>
(disjointDecomposition 7CLASS @QRQOW)
(forall (?ITEM, ?ITEM,)
(=>
(and
(inList 7ITEM; (ListFn @QROW))
(inList 7ITEM, (ListFn @QROW))
(not
(equal ?ITEM, ?ITEM,)))
(disjoint ?ITEM; ?ITEM,))))

The axiomatization of inList essentially defines inList as an irreflexive and asymmetric
binary predicate that, in terms of the function called ListOrderFn, is defined as follows:

(=>
(inList ?7ITEM 7LIST)
(exists (?NUMBER)
(equal (ListOrderFn ?LIST ?NUMBER) 7ITEM)))

In the same way, the partial binary function ListOrderFn is poorly axiomatized by:

(=>
(and
(instance ?LIST; List)
(instance ?LIST, List)
(forall (?NUMBER)

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 23 /B3

(equal (ListOrderFn ?LIST; ?NUMBER) (ListOrderFn ?LIST, ’NUMBER))))
(equal 7LIST, 7LIST,))

This axiomatization of ListOrderFn is not enough for deducing its basic properties. For
example, the following assertion cannot be proved:

Va VooV (ListOrder Fn(ListFn(xy, xa,x3),2) = 23)

As a consequence, the function ListOrderFn and the predicates inList, partition and
disjointDecomposition (and several others) do not produce the expected results. In the
proposal of [27] and in TPTP-SUMO, this problem remains unsolved. For example, since
partition is only partially defined in TPTP-SUMO, the axiom

(partition Organism Animal Plant Microorganism)

does not define a real partition. In particular, an instance of Organism could simultaneously
be an instance of both Animal and Plant. In Section B, we explain the solution that we
have implemented in Adimen-SUMO.

8 'Translation of Type Information

In SUMO, there is information that describes the signature of each predicate. This type
information is provided by means of the predicates domain and domainSubclass (also
the predicates range and rangeSubclass for the values of functions), which associate each
argument of a predicate to a class. In this way, arguments of predicates are restricted to
be an instance (a subclass in the case of domainSubclass) of its associated class.

However, in the current state of SUMO, a direct translation of this type information
does not produce the expected result, since some inconsistencies arise when using auto-
mated theorem provers. In the next subsection, we describe the problem in detail. Then,
we propose an appropriate translation of type information in SUMO, which is based on
the classical translation of many-sorted FOL-formulae into one-sorted FOL-formulae. In
the last subsection, we describe a problem which comes from the structure of SUMO and
which only arises after a proper translation of type information.

8.1 Unexpected Results from Type Information in SUMO

In this subsection, we describe the kind of inconsistencies that a FOL-theorem prover finds
when type information in SUMO is directly translated. Analyzing these inconsistencies, we
realize that the problem comes from a too weak axiomatization, which does not completely
handle type information. The problem is illustrated using an example that has been
automatically found using FOL-theorem provers.

For the explanation, we focus on the predicate material, which is axiomatized (including
type information) in the following way:

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 24 /13

(=>
(and
(domain 7REL ?NUMBER 7CLASS)
(?REL @QROW))
(instance (ListOrderFn (ListFn @ROW ?NUMBER)) ?CLASS))
(=>
(and
(domainSubclass TREL 7NUMBER 7CLASS)
(?REL @QROW))
(subclass (ListOrderFn (ListFn @ROW ?NUMBER)) 7CLASS))

Figure 2: Axiomatization of domain and domainSubclass in SUMO

(a) (instance material BinaryPredicate)
(b) (domainSubclass material 1 Substance)

(¢) (domain material 2 CorpuscularObject)

In other words, material is declared to be a binary predicate whose first argument is
restricted to be a subclass of Substance and whose second argument has to be an instance
of CorpuscularObject. One could expect to deduce the following statement

VaVy (material(z,y) — (subclass(x, Substance) A
instance(y, CorpuscularObject)))

according to the intended meaning of the axiomatization of predicates domain and domainSubclass
in SUMO (see Figure I?])@

This reasoning can be easily generalized to any axioms of the form (domain p k C)
or (domainSubclass p k C). At first glance, this solution allows a proper management of
type information. However, we have confirmed (using a theorem prover) that this kind of
translation does not always work as one would expect. For example, as we will explain
below, the translation of the following set of axioms] yields an inconsistency:

domain temporalPart 1 TimePosition)

domain temporalPart 2 TimePosition)

L

2. (

3. (domain time 1 Physical)

4 (domam time 2 TimePosition)
5. (<=

20Recall the problems described in Section [about the axiomatization of ListOrderFn.
2lExtracted from Merge kif version 1.61, but we have corrected Axiom 10.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO

25,13

(instance 7ABS Abstract)
(not
(exists (7POINT)
(or
(located 7ABS 7POINT)
(time ?7ABS 7POINT)))))

6. (instance temporalPart PartialOrderingRelation)

7. (<=>
(temporalPart 7POS (WhenFn ?THING))
(time ?THING ?POS))

8. (=>
(and
(subclass 7X 7Y)
(instance ?Z 7X))
(instance 7Z ?7Y))

9. (subclass PartialOrderingRelation ReflexiveRelation)

10. (<=>
(instance 7REL ReflexiveRelation)
(forall (7INST)
(7REL ?INST ?INST)))

The translation of the type information in Axioms 1-4 gives the following formula:

VaVy (temporal Part(z,y) — (instance(z, TimePosition) A
instance(y, TimePosition))) A
VaVy (time(z,y) — (instance(x, Physical) A

instance(y, TimePosition)))
In addition, the direct translation of Axiom 7 yields the formula

VaVy (temporal Part(z, WhenFn(y)) < time(y,z))

without using the related type information (Axioms 1-4). The problem is that the former
formula, the one that comes from Axioms 1-4 and which states the type information, does
not restrict the use of the latter one (from Axiom 7) for reasoning. Consequently, a theorem

prover can perform the following deduction, which is wrong. First, the sentence
instance(temporal Part, Re flexzive Relation)
is a logical consequence of Axioms 6, 8, and 9. So, by Axiom 10, we get

Va (temporal Part(z,x)).

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 26 /B3

From the above formula and Axiom 7, it follows that
Vo (time(z, WhenFn(x)))
and, by Axiom 5, we finally get
Va (—instance(zx, Abstract)).

Then, this formula yields an inconsistency for each instance of Abstract defined in SUMO,
e.g. instance(Y ear Duration, Abstract).

In the next subsection, we describe a translation of type information in SUMO that
solves the above problem.

8.2 Translation of Type Information in SUMO into First-Order
Formulae

A suitable translation of type information in SUMO is the classical technique that trans-
forms many-sorted FOL-formulae into equivalent one-sorted FOL ones. This technique
is described in e.g. [21]. Following this proposal, we first distribute universal/existential
quantification over conjunction/disjunction in every FOL-formula ¢ that results from the
direct translation of KIF-axioms. Then, for each subformula v = Vx « of ¢

e if the type of x is an instance of T, then ¢ is replaced with

Vz (instance(z,T) — «).

e if the type of x is a
Vo (subclass(z,T) — «).

Similarly, for each subformula ¢y = Jx « of ¢
e if the type of x is an instance of T, then 1 is replaced with

Jdx (instance(z,T) N o).

e if the type of x is a subclass of T, then 1 is replaced with

Jdx (subclass(z,T) N o).

Following this transformation, the translation of Axiom 7 in Subsection using the
type information in Axioms 1-4 (also from Subsection Bl) gives the formula

VaVy [((instance(z, TimePosition) A instance(y, Timelnterval)) —
(temporal Part(xz, WhenFn(y)) < time(x,y))]

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 27 /83

which is weaker than the direct translation of Axiom 7:
VaVy (temporal Part(x, WhenEFn(y)) < time(y, z))

Indeed, thanks to the instance guards, the above formula is weak enough to do not produce
any inconsistency.
For a more general example of the above-described transformation, consider the follow-
ing KIF-axiom
(forall (70BJ 7AGENT)
(=>
(exploits 70BJ 7AGENT)
(exists (7PROCESS)
(and
(agent 7PROCESS 7AGENT)
(resource 7PROCESS 70BJ)))))

and the type information associated with the three involved predicates:
(domain exploits 1 Object)
domain exploits 2 Agent)

(
(domain agent 1 Process)
(domain agent 2 Agent)

(

domain resource 1 Process)

AT B

(domain resource 2 Object)

By direct translation, the above KIF-axiom is converted into the FOL-formula
VaVy (exploits(z,y) — 3z ((agent(z,y) A resource(z,x))).

Then, by formulae 1 and 6, we know that x is restricted to be an instance of Object.
Besides, formulae 2 and 4 restrict y to be an instance of Agent, and formulae 3 and 5
restrict z to be an instance of Process. Hence, we conveniently transform the formula into

VaVy | (instance(x, Object) N instance(y, Agent)) —
(exploits(z,y) — Iz (instance(z, Process) N

agent(z,y) A resource(z,x)))].

In [27], the problem described in Subsection is not discussed, although the authors
propose to use this technique with the aim of gaining efficiency.

Using the transformation described, we transform all the FOL-formulae that are ob-
tained from the direct translation of KIF axioms in order to make the type information in
SUMO useful. However, as we explain in the next subsection, the definition of predicates
that are used in SUMO in order to structure knowledge — like subclass, instance, etc — is
not suitable for dealing with type information.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 28 /13

8.3 Incompatibility of Type Information with the Structure of
SUMO

After translating SUMO as explained in the above subsection, we realize that most of
the information that is intended to be defined in SUMO cannot be inferred because of
a self-reference problem. In the following example, we analyze why we cannot infer that
Object is a subclass of Entity in the ontology that results from a direct translation. First,
Object is defined as a subclass of Physical, and Physical as a subclass of Entity:

(subclass Object Physical)
(subclass Physical Entity)

Second, the predicate subclass is defined as an instance of PartialOrderingRelation, which
is a subclass of TransitiveRelation:

(instance subclass PartialOrderingRelation)
(subclass PartialOrderingRelation TransitiveRelation)

The translation of the above KIF-axioms into FOL-formulae is direct. Furthermore, the
next axiom establishes the relation between the subclass and instance predicates:

(=>
(and
(subclass 7X ?7Y)
(instance ?Z 7X))
(instance ?Z ?7Y))

Using the following type information regarding subclass and instance predicates

(domain subclass 1 SetOrClass)
(domain subclass 2 SetOrClass)
(domain instance 1 Entity)

(domain instance 2 SetOrClass)

the resulting FOL-formula is:

VaVyVz | (instance(z, SetOrClass) N instance(y, SetOrClass) A
instance(z, Entity)) —

(subclass(x,y) Ainstance(z,x) — instance(z,y))]

Since the predicate subclass is an instance of PartialOrderingRelation and, besides, PartialOrderingRelation
is a subclass of TransitiveRelation, from the above formula we can infer that the predi-
cate subclass is an instance of TransitiveRelation, provided that subclass is an instance
of SetOrClass. However, the predicate PartialOrderingRelation is not defined in SUMO
to be an instance of SetOrClass. Even so, there is no sense in defining the predicate

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 29/E3

subclass in such a way@ Thus, we cannot infer that the predicate subclass is an instance
of TransitiveRelation and, therefore, it does not follow that Object is a subclass of Entity.
In this way, much other information that is supposed to be implicitly defined in SUMO
cannot be inferred in practice.

A deeper analysis of this problem shows that its origin lies in the fact that SUMO
is defined in terms of SUMO. That is, SUMO is self-referential in the sense that the
predicates used to define SUMO are also defined using SUMO. These self-referential
predicates block the deductive process. Thus, a very simple solution to this problem would
be to distinguish between the meta-predicates instance and subclass, which are used for
the definition of the ontology, from the predicates instance and subclass, which are defined
in SUMO. Note that instance and subclass form the minimal set of predicates used for
defining SUMO, since any other predicate can be defined in terms of them.

This problem is not pointed out in [27]. However, the translation in TPTP-SUMO
overcomes this problem by means of an ad-hoc solution that explicitly asserts that every
class defined in the ontology is an instance of SetOrClass.

9 Adimen-SUMO: Our Proposal to Use SUMO with
FOL-Theorem Provers

As discussed in the previous section, SUMO in its current state is not suitable for use
with a FOL-theorem prover since it is self-referential. Hence, in this section we propose a
further transformation to overcome this limitation.

Our proposal consists in translating the whole ontology using a predefined schema. The
schema includes the basic predefined predicates instance, subclass, disjoint and partition,
which are defined as usual. Using this schema, we can transform the SUMO ontology into
a set of FOL-axioms. In particular, we have semi-automatically translated a part of SUMO
(files merge.kif version 1.61 and milo.kif version 1.87) to solve the problems described in
this paper. Thus, the resulting first order version of SUMO, which we call Adimen-
SUMO, is the result of applying the following treatment. First, axioms that correspond
to the second-order features of SUMO have been translated as explained in Section
This translation includes row variables. The remaining axioms that do not correspond to
FOL-formulae and that are not included in the above translation are currently discarded.
Second, type information has been used as described in Section The self-referential
problem of SUMO introduced in Subsection disappears by means of the predefined
predicates. As a result of this process, around 88% of the original SUMO axioms have
been translated.

This first order version of the SUMO ontology is almost free of inconsistencies. This
version seems to contain only one inconsistency involving the following axioms (plus the
definitions of instance, subclass, disjoint and partition):

22Naturally, PartialOrderingRelation is just defined as subclass of TransitiveRelation,
AntisymmetricRelation and RefleziveRelation.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 30/E3

partition Attribute InternalAttribute RelationalAttribute)
instance DeviceOn Internal Attribute)

subclass NormativeAttribute Relational Attribute)

subclass DeviceAttribute ObjectiveNorm)

(

(

(

(subclass ObjectiveNorm NormativeAttribute)

(

(subclass DeviceStateAttribute DeviceAttribute)
(

instance DeviceOn DeviceStateAttribute)

These axioms yield an inconsistency since Attribute is defined to be partitioned into the
classes InternalAttribute and RelationalAttribute, while DeviceOn is defined to be an in-
stance of both classes. Note that DeviceOn is a direct instance of InternalAttribute and
is also an instance of RelationalAttribute by inheritance, since it is a direct instance of
DeviceStateAttribute and the class DeviceStateAttribute is a subclass of RelationalAttribute.
Our solution to this inconsistency is to remove one of the axioms that define DeviceOn, ei-
ther (instance DeviceOn InternalAttribute) or (instance DeviceOn DeviceStateAttribute).

After correcting the previous inconsistency, no more inconsistencies arise from our cur-
rent first order version of SUMO. Thus, this version of the ontology can be used by first-
order theorem provers to establish formal reasoning about the properties and relations of
the classes defined by the ontology. If conveniently provided to a FOL-theorem prover, our
current first order version of SUMO already contains enough knowledge to infer very in-
teresting properties. For example, it is now very straightforward to infer that plants do not
have brain (or any other subclass of AnimalAnatomicalStructure) from the current content
of the ontology. In fact, this question cannot solved using the TPTP-SUMO translation.
To answer this question, it is enough to prove that

(not
(and
(instance 7BRAIN Brain)
(instance ?PLANT Plant)
(part 7BRAIN 7PLANT)))

follows from Adimen-SUMO. In Appendix Bl we provide a full demonstration obtained
with a FOL-theorem prover when proving the above statement.

10 Conclusions

Ontologies provide computer-accessible descriptions of the meaning of relevant concepts
and relationships between these concepts. Semantic Web development requires the ability
to infer implied information from formal ontologies. That is, beyond the literal meaning
expressed in the ontologies, an intelligent web service system needs to know what the
implications of that meaning are.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 31/E3

Knowledge representation is a very old field in Artificial Intelligence. The main prob-
lem is that there is a tight connection between the computational model for representing
knowledge and the inferencing capabilities supported by the model. Today, the family of
Web Ontology Languages, including OWL-DL [T5], is the most common formal knowledge
representation model, being accepted and standardized by the W3C (World Wide Web
Consortium). OWL-DL is a very powerful knowledge representation model, which allows
a trade-off of expressiveness versus computational plausibility and complexity. However,
state-of-the-art machinery like formal reasoners such as Pellet or Fact++ are unable to
cope with complex ontologies such as SUMO. Thus, as stated in [I6], the application of
first-order automated theorem provers to ontologies like SUMO is of crucial importance
to the development of the Semantic Web infrastructure.

In this paper, we have summarized our experience with using first-order theorem provers
as inference engines for debugging large and complex ontologies. In particular, we have
concentrated our efforts on studying, revising and improving SUMO.

First, we have explained our approach to translating KIF-axioms into the first-order
logic language. Then, we have used first-order theorem provers as inference engines for
debugging the ontology. We have summarized the problems we have found and the solutions
we have adopted in this process. As a result, we have obtained a validated and consistent
first-order version of SUMOE which can be used appropriately by first-theorem provers
for automatic reasoning purposes. Following the same approach presented in this paper,
we plan to continue revising the latest SUMO versions and also their domain extensions.

Although, our study focuses on SUMO (Suggested Upper Merged Ontology, see [25]),
the work we reported here would be very similar working with any other large and com-
plex ontology (i.e. Cyc or DOLCE). Thus, we are continuing this research on automated
reasoning with large and complex ontologies like SUMO, DOLCE and Cyc. Our final
goal is to provide formal underpinnings and efficient automated reasoning services for the
Semantic Web by using expressive ontologies.

11 Acknowledgement

Partial support provided by FORMALISM TIN2007-66523, KNOW2 TIN2009-14715-C04-04,
LOREA GIU07/35 and KYOTO ICT-2007-211423.

References
[1] M. Abadi, The power of temporal proofs, Theor. Comput. Sci. 65 (1) (1989) 35-83.

2] J. Alvez, J. Atserias, J. Carrera, S. Climent, E. Laparra, A. Oliver, G. Rigau, Complete
and consistent annotation of WordNet using the Top Concept Ontology, in: N. Calzo-
lari, K. Choukri, B. Maegaard, J. Mariani, J. Odjik, S. Piperidis, D. Tapias (eds.), Pro-

23 Available at http://adimen.si.ehu.es/web/AdimenSUMO.

KYOTO: ICT-211423 April 28, 2010

http://adimen.si.ehu.es/web/AdimenSUMO

First-Order Reasoning with SUMO 32/E3

ceedings of the Sixth International Language Resources and Evaluation (LREC’08),
European Language Resources Association (ELRA), Marrakech, Morocco, 2008.

J. Atserias, G. Rigau, L. Villarejo, Spanish WordNet 1.6: Porting the spanish WordNet
across Princeton versions, in: Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC’04), 2004.

P. Baumgartner, A. Fuchs, C. Tinelli, Implementing the Model Evolution Calculus,
in: S. Schulz, G. Sutcliffe, T. Tammet (eds.), Special Issue of the International Journal
of Artificial Intelligence Tools (IJAIT), vol. 15(1) of International Journal of Artificial
Intelligence Tools, 2005, preprint.

P. Baumgartner, F. M. Suchanek, Automated reasoning support for first-order on-
tologies, in: J. Alferes, J. Bailey, W. May, U. Schwertel (eds.), Proceedings of the
4th International Workshop in Principles and Practice of Semantic Web Reasoning
(PPSWR 2006), Revised Selected Papers, vol. 4187 of LNAI, Springer, 2006.

C. Bizer, T. Heath, K. Idehen, T. Berners-Lee, Linked data on the web (ldow2008),
in: Proceeding of the 17th international conference on World Wide Web (WWW °08),
ACM, New York, NY, USA, 2008.

B. Chandrasekaran, J. R. Josephson, V. R. Benjamins, What are ontologies, and why
do we need them?, IEEE Intelligent Systems 14 (1) (1999) 20-26.

K. Claessen, N. Sorensson, New techniques that improve MACE-style model finding,
in: Proc. of Workshop on Model Computation (MODEL), 2003.

P. R. Cohen, H. J. Levesque, Persistence, intention, and commitment, in: P. R. Cohen,
J. Morgan, M. E. Pollack (eds.), Intentions in Communication, MIT Press, Cambridge,
MA, 1990, pp. 33-69.

G. de Melo, F. Suchanek, A. Pease, Integrating YAGO into the Suggested Upper
Merged Ontology, in: Proceedings of the 20th IEEE International Conference on Tools
with Artificial Intelligence (ICTAT 2008), vol. 1, IEEE Computer Society, Dayton, OH,
USA, 2008.

N. Eén, N. Sorensson, An extensible sat-solver, Theory and Applications of Satisfia-
bility Testing (2004) 502-518.

C. Fellbaum (ed.), WordNet. An Electronic Lexical Database, The MIT Press, 1998.

A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schneider, Sweetening ontolo-
gies with DOLCE;, in: Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic Web (EKAW
'02), Springer-Verlag, London, UK, 2002.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 33/M3

[14]

[15]

[16]

P. Hayes, C. Menzel, A semantics for the knowledge interchange format, in: In IJCAI
2001 Workshop on the IEEE Standard Upper Ontology, 2001.

I. Horrocks, P. Patel-Schneider, Reducing OWL entailment to description logic satis-
fiability, J. of Web Semantics 1 (4) (2004) 345-357.

I. Horrocks, A. Voronkov, Reasoning support for expressive ontology languages using
a theorem prover, in: J. Dix, S. J. Hegner (eds.), Proceedings of the 4th International
Symposium in Foundations of Information and Knowledge Systems (FoIKS 2006), vol.
3861 of Lecture Notes in Computer Science, 2006.

H. J. Keisler, Model theory for infinitary logic; logic with countable conjunctions and
finite quantifiers., North-Holland Pub. Co., Amsterdam, 1971.

G. Kobilarov, C. Bizer, S. Auer, J. Lehmann, Dbpedia, a linked data hub and data
source for web applications and enterprises, in: 18th International World Wide Web
Conference, 2009.

K. Korovin, iProver — an instantiation-based theorem prover for first-order logic (sys-
tem description), in: A. Armando, P. Baumgartner, G. Dowek (eds.), Proceedings of
the 4th International Joint Conference on Automated Reasoning (IJCAR 2008), vol.
5195 of Lecture Notes in Computer Science, Springer, 2008.

B. Magnini, G. Cavaglia, Integrating subject field codes into wordnet, in: Proceedings
of the Second International Conference on Language Resources and Evaluation (LREC
2000), 2000.

M. Manzano, Extensions of first order logic, Cambridge University Press, New York,
NY, USA, 1996.

C. Matuszek, J. Cabral, M. Witbrock, J. DeOliveira, An introduction to the syntax
and content of cyc, in: Proceedings of the 2006 AAAI Spring Symposium on For-
malizing and Compiling Background Knowledge and Its Applications to Knowledge
Representation and Question Answering, 2006.

W. McCune, Mace 2.0 reference manual and guide, Tech. Rep. ANL/MCS-TM-249,
Mathematics and Computer Science Division, Argonne National Laboratory (June
2001).

W. McCune, L. Wos, Otter - the CADE-13 competition incarnations, J. Autom. Rea-
soning 18 (2) (1997) 211-220.

I. Niles, A. Pease, Towards a standard upper ontology, in: C. Welty, B. Smith (eds.),
Proceedings of the 2nd International Conference on Formal Ontology in Information
Systems (FOIS-2001), 2001.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 34 /B3

[26]

N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, M. A. Musen, Creating
semantic web contents with Protégé-2000, IEEE Intelligent Systems 16 (2) (2001) 60—
71.

A. Pease, G. Sutcliffe, First order reasoning on a large ontology., in: G. Sutcliffe,
J. Urban, S. Schulz (eds.), ESARLT, vol. 257, 2007.

F. Pelletier, G. Sutcliffe, C. Suttner, The development of CASC, AI Communications
15 (2-3) (2002) 79-90.

D. Ramach, R. P. Reagan, K. Goolsbey, First-orderized researchcyc: Expressivity and
efficiency in a common-sense ontology, in: In Papers from the AAAI Workshop on
Contexts and Ontologies: Theory, Practice and Applications, 2005.

A. Riazanov, A. Voronkov, The design and implementation of VAMPIRE, AI Com-
munications 15 (2-3) (2002) 91-110.

M. G. Richard, R. E. Fikes, R. Brachman, T. Gruber, P. Hayes, R. Letsinger, V. Lifs-
chitz, R. Macgregor, J. Mccarthy, P. Norvig, R. Patil, Knowledge interchange format
version 3.0 reference manual (1992).

S. Schulz, E — a brainiac theorem prover, Journal of AI Communications 15 (2/3)
(2002) 111-126.

S. Staab, R. Studer (eds.), Handbook on ontologies (2nd edition), International Hand-
books in Information Systems, Springer, 2009.

M. J. Streeter, D. Golovin, S. F. Smith, Combining multiple heuristics online, in:
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July
22-26, 2007, Vancouver, British Columbia, Canada, 2007.

F. M. Suchanek, G. Kasneci, G. Weikum, Yago: A Core of Semantic Knowledge, in:
16th international World Wide Web conference (WWW 2007), ACM Press, New York,
NY, USA, 2007.

G. Sutcliffe, C. Suttner, The TPTP Problem Library: CNF Release v1.2.1, Journal
of Automated Reasoning 21 (2) (1998) 177-203.

G. Sutcliffe, C. Suttner, The State of CASC, AI Communications 19 (1) (2006) 35-48.

D. Tsarkov, A. Riazanov, S. Bechhofer, I. Horrocks, Using Vampire to reason with
OWL, in: International Semantic Web Conference, 2004.

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 35 /M3

A Analyzing Traces of FOL-Theorem Provers

In this section, we show the trace obtained from E-Prover with an example from Section
Bl More specifically, we use the set of axioms that helped us to discover the incorrect
axiomatization of disjoint, which was corrected in Merge kif version 1.22. The trace can
be reproduced with the file disjoint.eprover.tstp in the Adimen-SUMO package using
the following command:

eprover -xAuto -tAuto --tstp-in -1 6
disjoint.eprover.tstp | epclextract

In Figure B, we summarize the trace that is obtained using the above command. The
whole trace can be consulted in the file output.disjoint.eprover.txt in the Adimen-
SUMO package. The ten first steps are the axioms that will be used in the trace. These
axioms are simplified using some general transformations, such as Skolemization or distri-
bution. Besides, axioms are transformed into conjunctive normal form (or CNF), where
each disjunct is represented as a list of atoms (separated by commas and delimited by
square brackets), positive atoms are marked with ‘“++’ and negative (or negated) atoms
with ‘==, After this initial transformation, the formulae in steps 18, 28, 35 and 39 are dis-
juncts obtained from the transformation of the formulae in steps 1-4, where the disjuncts
will not be used in the trace has been discarded by E-Prover. Note that esk3_1 (in step
35) is a unary Skolem function that comes from the variable X7 of the formula in step 3.
Besides, the formulae in steps 40-46 are directly obtained from steps 5-10.

Then, E-Prover starts to obtain new formulae by resolution. On one hand, the formula
++instance (outdoors,nonNullSet) (instep 71) follows from ++instance (X2,nonNullSet)
(in step 18) and ++disjoint(indoors,outdoors) (in step 44). On the other hand,
--instance (outdoors,nonNullSet) (in step 179) is obtained after 10 resolution steps.
To sum up, from the formulae in steps 39, 41 and 42 it follows that everything is ei-
ther physical or not region (in step 154) after two resolution steps. Hence, since
++instance (outdoors,region) (from step 45), we have that ++instance (outdoors,physical)
(in step 164). Besides, from the formulae in steps 28 and 35, we have that everything is ei-
ther not abstract or not physical (in step 78). Therefore, it follows that ~—~instance (outdoors, abstract
(in step 172). Similarly, from the formulae in steps 39, 40 and 43, it follows that every-
thing is either abstract or not nonNullSet (in step 130) after two resolution steps. Finally,
from the last two results, it follows that -—instance (outdoors,nonNullSet) (in step 179).
Hence, the formulae in steps 71 and 179 yield an inconsistency.

B Using Adimen-SUMO for Automated Reasoning

In this section, we show the trace that is obtained from E-Prover with the example in
Section @ In Figure @l is found a brief summary of the proof that is obtained using the
file brain.eprover.tstp from the Adimen-SUMO package. The whole proof is available

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 36,/M3

in file output.brain.eprover.txt. For brevity, we have used some name abbreviations:
the predicates erhaustiveDecomposition and disjointDecomposition4 have been abbrevi-
ated to exhDecomp4 and disDecomp4 respectively, whereas the constant function symbol
animalAnatomicalStructure has been abbreviated to animalAS.

The proof starts with the axioms involved (up to step 20). Note that E-Prover does
not use all the axioms in the source file. Then, E-Prover assumes the negation of the
objective (in step 21) and applies the initial transformation to all the formulae (up to step
84). From the transformation of the negated conjecture, E-Prover selects five disjuncts,
which are those in steps 25-29. Note that, after negation, the variables X1 and X2 in the
objective become existentially quantified and, thus, cause the introduction of the Skolem
constant functions esk1_0 and esk2_0, respectively. Besides, the disjuncts in steps 48, 53
and 71 come from the transformation of the formulae in 6, 7 and 9, where the disjuncts
that are not going to be used in the proof have been discarded. The remaining formulae
of the initial transformation are the disjuncts in steps 40, 74, 75, 81 and 84, which come
directly from the formulae in steps 5, 10, 11, 17 and 20, respectively.

The inconsistency comes from the formulae -~instance (esk1_0,animal) (in step 387)
and ++instance(esk1_0,animal) (in step 442). On one hand, the formula --instance (esk1_0,animal)
results from a 4 step resolution sequence that starts with the formulae in steps 53 and
84 to finally yield ++disDecomp4(organism,animal,plant, microorganism) (in step
215). Then, using the formula in step 71, we obtain ++disjoint(animal, plant) (in
step 340). Next, using the formula in step 48, we have that everything is not an in-
stance of either plant or animal. Hence, since ++instance(esk1_0,plant) (in step
26), we finally obtain the formula --instance(eskl1_0,animal). On the other hand,
++instance(esk1_0,animal) results from an 8 step resolution sequence. First, from
the formulae in steps 40, 75 and 81, it follows that everything is either an instance of
animalAS or not an instance of brain (in step 157), and also that everything is ei-
ther an instance of organism or not an instance of plant (in step 158). Then, using
++instance (esk2_0,brain) (in step 27) and ++instance(esk1_0,plant) (in step 26), we
obtain, respectively, ++instance (esk2_0,animalAS) (in step 239) and ++instance (esk1_0,organism)
(in step 249). Using these last two formulae and also ++part (esk2_0,esk1_0), ++instance(eskl 0,object
and ++instance(esk2 0,object) (in steps 25, 28 and 29 respectively), we finally obtain
++instance(esk1.0,animal) (in step 442) from the disjunct in step 74 (after resolution
steps 183, 436, 439 and 440). Hence, we obtain a proof of the original goal.

C Translating SUMO into FOL-Formulae: A Detailed
Example

In this section, we provide a detailed description of the translation of SUMO into FOL-
formulae. Here, we especially focus on some details that have not been discussed in the
body of the paper. We choose TPTP syntax to write FOL-formulae, since most of current
FOL-theorem provers accept it. In this section, we just use the existential (?) and universal

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 37/ME3

(1) quantifiers and the classical connectives negation (~), conjunction (&), disjunction
(|), implication (=>) and equivalence (<=>). A whole description of TPTP syntax is
available at http://www.tptp.org. In order to illustrate the translation of SUMO into
FOL-formulae, we consider the following set of axioms. First, we take two of the main
predefined predicates, which are $instance and $subclass £

$domain $instance 1 $object)

$domain $instance 2 $class)

L
2. (
3. ($domain $subclass 1 $class)
4. ($domain $subclass 2 $class)
5. (

forall (7X)
($subclass 7X ?X))

6. (forall (7X7Y7Z)
(=>
($subclass 7X 7Y)
($subclass 7Y 7Z))
($subclass 7X 7Z))

7. (forall (7X7Y)
(=>
($subclass 7X 7Y)
($subclass 7Y 7X))
(equal 7X 7Y))

8. (forall (7X7Y?Z)
(=>
($instance 7X ?7Y)
($subclass 7Y 7X))
($instance 7X ?7z))

Note that type information (axioms 1-4) is provided using the predefined predicate
$domain and also the predefined constants $object and $class, which respectively corre-
spond to the meta-level concepts of object and class. In our translation, meta-level type
information is used during the translation for checking that definitions are consistent, but it
does not directly appear in the resulting FOL-formulae. Predicates $instance and $subclass
are defined as usual (axioms 5-8) and its translation into TPTP syntax is straightforward:

('[X]: $subclass(X,X))

('[X,Y,Z]: ($subclass(X,Y) & $subclass(Y,Z))
=> $subclass(X,Z))

('[X,Y]: ($subclass(X,Y) & $subclass(Y,X))

24The prefix $- is used to denote predefined or distinguished constant/predicate names.

KYOTO: ICT-211423 April 28, 2010

http://www.tptp.org

First-Order Reasoning with SUMO 38/M3

= (X=Y))

('[X,Y,Z]: ($instance(X,Y) & $subclass(Y,Z))
=> $instance(X,Z))

In addition, we use some other predefined predicates, such as $partition, $exhaustive Decomposition,
$disjointDecomposition and $disjoint, which are defined in the following way:

9. ($domain $partition 1 $class)
10. ($domain $partition 2 @Sclass)

11. (forall (?CLASS @QRQW)
(<=>
($partition ?CLASS QROW)
(=>
($exhaustiveDecomposition ?CLASS @QRQOW)
($disjointDecomposition ?CLASS 7ROW))))

12. ($domain $exhaustiveDecomposition 1 $class)
13. ($domain $exhaustiveDecomposition 2 @$class)

14. (forall (?CLASS @QRQOW)
(<=>
($exhaustiveDecomposition ?CLASS @QRQOW)
(forall (7X)
(=>
($instance ?X ?CLASS)
(Qor (QROW, 7HEAD, @_)
($instance 7X 7HEAD))))))

15. ($domain $disjointDecomposition 1 $class)
16. ($domain $disjointDecomposition 2 @$class)

17. (forall (?7CLASS @QRQOW)
(<=>
(@and (@QROW, 7CLASS1, QTAIL)
(@and (@QTAIL, 7CLASS2, @)
($disjoint 7CLASS1 7CLASS2)))))

18. ($domain $disjoint 1 $class)
19. ($domain $disjoint 2 $class)

20. (forall (?CLASS1 7CLASS2)
(<=>
($disjoint?CLASS17CLASS2)
(forall (7INST)

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 39/M3

(not
(and
($instance?INST?CLASS1)
($instance?INST?CLASS2))))))

Here, the variable arity predicates $partition, $exhaustive Decomposition and $disjoint Decomposition
have been turned into binary predicates by means of the use of row lists, which are tuples
of non-fixed (but finite) arity. Row lists allow us to group several elements in a single
argument, which is marked with the prefix @- in type information (axioms 10, 13 and
16). Those arguments marked with @- are therefore always used with row variables/lists.
Further, we also provide specific operators to deal with row variables/lists: the operators
@and and @or , which take 3 variables as arguments (2 row variables and a single vari-
able). These operators are a kind of iterators that enables us to iteratively process each
element in the row variable/list. The first element (head) in the row variable/list that oc-
curs in the first argument of a row operator can be addressed using the second argument of
the row operator and the rest of elements (tail) are addressed in the third argument, which
allows for recursive definitions. Thus, an @and (resp. @Qor) formula is translated into a
conjunction (resp. disjunction) of formulas, one for each element in the row variable/list
occurring in the first argument. For example, considering a row list of arity two, axioms
11, 14 and 17 are translated into:

(' [CLASS,ROW1,ROW2]: $partition3 (CLASS,ROW1,ROW2) <=>
($exhaustiveDecomposition3(CLASS,ROW1,R0W2)
& $disjointDecomposition3(CLASS,ROW1,ROW2)))

('[CLASS,ROW1,ROW2]: $exhaustiveDecomposition3(CLASS,ROW1,ROW2) <=>
('[X]: $instance(X,CLASS) => ($instance(X,ROW1)
| $instance(X,ROW2))))

('[CLASS,ROW1,ROW2]: $disjointDecomposition3(CLASS,ROW1,ROW2) <=>
$disjoint (ROW1,ROW2))

Note that we use predicate arities as postfix in predicate names when combined with
row variables/lists, since FOL-theorem provers restrict the use of predicate symbols to a
single arity.

Finally, we are going to translate the following set of axioms

21. ($disjointDecomposition Relation @(BinaryRelation, TernaryRelation,
QuaternaryRelation, QuintaryRelation, VariableArityRelation))

. ($partition Relation 1 @(Predicate, Function, List))

. ($partition Relation 1 @(TotalValuedRelation, PartialValuedRelation))
24. ($subclass BinaryRelation 1 Relation)

-

(<=

$subclass ReflexiveRelation 1 BinaryRelation)

($1nstance 7REL ReflexiveRelation)

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 40 /83

(forall (7INST)
($holds3 7REL ?INST 7INST)))

27. ($domain connected 1 Object)

28. ($domain connected 2 Object)

29. ($instance connected BinaryPredicate)

30. ($instance connected ReflexiveRelation)
31. ($subrelation meetsSpatially connected)
32. ($subrelation overlapsSpatially connected)
33. (=>

(connected 70BJ1 70BJ2)

(or
(meetsSpatially 70BJ1 70BJ2)
(overlapsSpatially 70BJ1 70BJ2)))

where $holds3 is the predicate used to write the reflexive property of binary relations in
first-order logic (axiom 26). First, since the arities of the row lists in axioms 21, 22 and 23
are 5, 3 and 2 respectively, axioms 11, 14 and 17 have to be translated according to each
arity. Then, axioms 21-23 are directly translated into:

$disjointDecomposition6(Relation,BinaryRelation,TernaryRelation
QuaternaryRelation,QuintaryRelation,VariableArityRelation)

$partitiond (Relation,Predicate,Function,List)

$partition3(Relation,TotalValuedRelation,PartialValuedRelation)
Then, the translation of axioms 24-26 is also direct:

$subclass(BinaryRelation,Relation)

$subclass(ReflexiveRelation,BinaryRelation)

('[REL]: $instance(REL,ReflexiveRelation) <=>
' [INST]: $holds3(REL,INST,INST))

Next, we translate axioms 29, 30 and 33. Note that, since meetsSpatially and overlapsSpatially
are subrelations of connected, type information for meetsSpatially and overlapsSpatially is
inherited from axioms 27-28. Further, we use the constant constConnected for the occur-
rences of connected as term. Thus, we obtain:

$instance(constConnected,BinaryPredicate)
$instance(constConnected,ReflexiveRelation)

('[0BJ1,0BJ2]: ($instance(0BJ2,0bject) & $instance(0BJ1,0bject)) =>
(connected(0BJ1,0BJ2) => (meetsSpatially(0BJ1,0BJ2) |
overlapsSpatially(0BJ1,0BJ2))))

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 41 /83

Finally, we add the reflection formula that allows to relate the predicates connected
and $holds3 via the constant constConnected:

('[X,Y]: connected(X,Y) <=> $holds3(constConnected,X,Y))

We also have to add a reflection formula for meetsSpatially and overlapsSpatially since
those predicates are instance of ReflexiveRelation.

D Resources

In this section, we introduce the files contained in the Adimen-SUMO package@ which
have been used along the work presented in this paper. The interested reader may try the
examples described in this work, and many others, using a FOL-theorem prover such as
E-Prover.

The source files that contain the ontology in KIF format are predefinitions.kif,
mergel61.kif and milo187.kif. The first file, predefinitions.kif, contains the defi-
nitions of the basic predicates that are used in the rest of the ontology, as described in
Section The syntax of this file also includes some non-KIF features, such as row op-
erators (see Appendix [C), that are very useful to support the translation. The whole
description of these extra syntactic features is out of the scope of this paper (we plan to
include a complete description in a future work), but its meaning can be easily inferred
from the context. The last two files mergel61.kif and milo187.kif correspond to the top
and mid level of SUMO respectively. Some minor syntactic modifications have been done
in these files in order to be adapted to our translator. Moreover, we have repaired all the
axioms that produced an inconsistency.

The result of translating and eliminating inconsistencies from the above three files can
be found in adimen.sumo.eprover.tstp, which has been prepared to be used with E-
ProverPd This file has been tested using several FOL-theorem provers during many hours
(even days) and no more inconsistencies have been found. Thus, it can be used to explore
the reasoning capabilities of SUMO.

An example of inconsistency that has been found by an FOL-theorem prover in a
preliminary version of adimen.sumo.eprover.tstp is described in Section B (see also
Appendix [Al). The axioms that are necessary to reproduce the inconsistency have been
collected in the file disjoint.eprover.tstp. The explanation of the inconsistency given by
E-Prover can be consulted in output.disjoint.eprover.txt.

Regarding the reasoning capabilities of SUMO, in brain.eprover.tstp we have iso-
lated the axioms from adimen.sumo.eprover.tstp that are necessary to infer that plants
do not have brain (see Section@and Appendix[B). The proof for the goal in brain.eprover.tstp
given by E-Prover can be consulted in output.brain.eprover.txt.

25 Available at http://adimen.si.ehu.es/web/AdimenSUMO.
26We also provide the file adimen.sumo.vampire.tstp that has been prepared to be used with the
last versions of Vampire.

KYOTO: ICT-211423 April 28, 2010

http://adimen.si.ehu.es/web/AdimenSUMO

First-Order Reasoning with SUMO 42 i3

1 : ¢ 1[X1]:![X2]:(disjoint (X1,X2) <=>((instance(X1,nonNullSet)&instance(X2,nonNullSet))&
' [X3] :~((instance(X3,X1)&instance(X3,X2))))) : initial(‘‘disjoint.eprover.tstp’’, disjointl)
2 : : !'[X4]: (instance(X4,abstract) <=>~(7[X5] : (located(X4,X5) [time(X4,X5))))
initial(‘‘disjoint.eprover.tstp’’, disjoint2)
3 : : ![X6]: (instance(X6,physical) <=>7[X7]:7[X8]: (located(X6,X7)&time (X6,X8)))
initial(‘‘disjoint.eprover.tstp’’, disjoint3)
4 : : 1[X9]:1[X10]:![X11]:((instance(X9,X10)&subclass(X10,X11))=>instance(X9,X11)) :
initial(‘‘disjoint.eprover.tstp’’, disjoint4)
5 : : subclass(nonNullSet,setOrClass) : initial(‘‘disjoint.eprover.tstp’’, disjoint5)
6 : : subclass(region,object) : initial(‘‘disjoint.eprover.tstp’’, disjoint6)
7 : : subclass(object,physical) : initial(‘‘disjoint.eprover.tstp’’, disjoint7)
8 : : subclass(setOrClass,abstract) : initial(‘‘disjoint.eprover.tstp’’, disjoint8)
9 : : disjoint(indoors,outdoors) : initial(‘‘disjoint.eprover.tstp’’, disjoint9)
10 : : instance(outdoors,region) : initial(‘‘disjoint.eprover.tstp’’, disjoint10)
18 : [++instance (X2,nonNullSet) ,--disjoint (X1,X2)] : split_conjunct(15) **E from (1)
98 : [--instance(X1,abstract) ,--located(X1,X2)] : split_conjunct(25) *** from (2)
'35 ¢ : [++located (X1,esk3_1(X1)),--instance(X1,physical)] : split_conjunct(33) **E from (3)
39 : [++instance(X1,X2) ,--subclass(X3,X2),--instance(X1,X3)] : split_conjunct(38) **¥ from (4)
40 : : [++subclass(nonNullSet,setOrClass)] : split_conjunct(5)
41 : : [++subclass(region,object)] : split_conjunct(6)
42 : : [++subclass(object,physical)] : split_conjunct(7)
43 : : [++subclass(setOrClass,abstract)] : split_conjunct(8)
44 : : [++disjoint(indoors,outdoors)] : split_conjunct(9)
45 : : [++instance(outdoors,region)] : split_conjunct(10)
71 : : [++instance (outdoors,nonNullSet)] : spm(70,64) **E from (18, 44)
78 : [--instance(X1,abstract) ,--instance(X1,physical)] : spm(77,76) **¥ from (28, 35)
‘85 : [++instance(X1,set0rClass) ,--instance (X1,nonNullSet)] : spm(84,66) *** from (39, 40)
86 : : [++instance(X1,abstract),--instance(X1,setOrClass)] : spm(84,67) *** from (39, 43)
87 : : [++instance(X1,object),--instance(X1,region)] : spm(84,68) **E from (39, 41)
88 : : [++instance(X1,physical),--instance(X1,object)] : spm(84,69) *** from (39, 42)
130 : : [++instance(X1,abstract) ,--instance(X1,nonNullSet)] : spm(127,124) **¥ from (86, 85)
154 : : [++instance (X1,physical) ,--instance(X1,region)] : spm(151,134) **¥ from (88, 87)
164 : : [++instance(outdoors,physical)] : spm(163,65) *** from (154, 45)
172 : : [--instance (outdoors,abstract)] : spm(108,170) **¥ from (78,164)
179 : : [--instance(outdoors,nonNullSet)] : spm(178,158) **¥ from (172, 130)
180 : : [--$truel : rw(179,118) *** from (179, 71)
181 : : [1 : cn(180)
182 : : [] : 181 : ‘proof’

Figure 3: An Inconsistency Discovered by E-Prover

KYOTO: ICT-211423 April 28, 2010

First-Order Reasoning with SUMO 43 /i3

1 : conj : !'[X1]:![X2]:((instance(X2,object)&instance(X1,object))=>~(((instance(X2,brain)&
instance(X1,plant))&part(X2,X1)))) : initial(‘‘brain.eprover.tstp’’, goal)
5 : : '[X3]:!1[X4]:!'[X5]:((instance(X3,X4)&subclass (X4,X5))=>instance(X3,X5))
initial(‘‘brain.eprover.tstp’’, predefinitionsB4)
6 : : ![X6]:![X7]:(disjoint (X6,X7) <=>![X8] :~((instance (X8,X6)&instance(X8,X7)))) :
initial(‘‘brain.eprover.tstp’’, predefinitionsB5)
7 ¢ : V[X9]:![X10]:![X11]:![X12]: (partition4(X9,X10,X11,X12) <=>(exhDecomp4(X9,X10,X11,X12)&
disDecomp4(X9,X10,X11,X12))) : initial(‘‘brain.eprover.tstp’’, predefinitionsB6)
9 : : ![X9]:![X10]:![X11]:![X12]: (disDecomp4(X9,X10,X11,X12) <=>((disjoint (X10,X11)&
disjoint (X10,X12))&disjoint(X11,X12))) : initial(‘‘brain.eprover.tstp’’, predefinitionsB8)
10 : : ![X13]:![X14]: ((instance(X13,object)&instance(X14,0bject))=>(((instance(X13,animalAS)&
instance(X14,organism)) &part(X13,X14))=>instance(X14,animal)))
initial(‘‘brain.eprover.tstp’’, mergel58B1)
11 : : subclass(brain,animalAS) : initial(‘‘brain.eprover.tstp’’, milo184B1)
17 : : subclass(plant,organism) : initial(‘‘brain.eprover.tstp’’, mergel58B7)
20 : : partition4(organism,animal,plant,microorganism) : initial(‘‘brain.eprover.tstp’’, mergel58B10)
21 : neg : ~(![X1]:![X2]:((instance(X2,object)&instance(X1,object))=>~(((instance(X2,brain)&
instance(X1,plant))&part(X2,X1))))) : assume_negation(1)
25 neg : [++part(esk2.0,esk1.0)] : split_conjunct(24) *** from (21)
26 : neg : [++instance(eskl1_0,plant)] : split_conjunct(24) *** from (21)
27 : neg : [++instance(esk2_0,brain)] : split_conjunct(24) *** from (21)
28 : neg : [++instance(esk1.0,object)] : split_conjunct(24) **¥ from (21)
29 : neg : [++instance(esk2.0,object)] : split_conjunct(24) **¥ from (21)
40 : [++instance(X1,X2) ,--subclass(X3,X2) ,--instance(X1,X3)] : split_conjunct(39) *** from (5)
48 : : [--disjoint(X1,X2),--instance(X3,X2),-—instance(X3,X1)] : split_conjunct (45) *** from (6)
‘53 : : [++disDecomp4(X1,X2,X3,X4) ,--partitiond(X1,X2,X3,X4)] : split_conjunct(51) #*% from (7)
71k [++disjoint (X2,X3) ,--disDecomp4(X1,X2,X3,X4)] : split_conjunct(67) **¥ from (9)
74 ¢ [++instance(X1,animal) ,--part(X2,X1) ,--instance(X1,organism) ,--instance(X2,animalAS),
--instance(X1,object) ,--instance (X2,object)] : split_conjunct(24) *** from (10)
75 : : [++subclass(brain,animalAS)] : split_conjunct(11)
81 : : [++subclass(plant,organism)] : split_conjunct(17)
84 : : [++partitiond(organism,animal,plant,microorganism)] : split_conjunct(20)
157 & [++instance(X1,animalAS) ,--instance(X1,brain)] : spm(156,125) *** from (40, 75)
158 : : [++instance(X1,organism),--instance(X1,plant)] : spm(156,126) *** from (40, 81)
183 : neg : [++instance(X1,animal),--part(esk2_0,X1),--instance(esk2_0,animalAS),
--instance(X1,object) ,--instance(X1,organism)] : spm(181,122) **¥ from (74, 29)
215 : : [++disDecomp4 (organism,animal,,plant,microorganism)] : spm(214,135) **¥ from (53, 84)
239 : neg : [++instance(esk2_0,animalAS)] : spm(238,123) *** from (157,27)
249 : neg : [++instance(esk1.0,organism)] : spm(248,121) **¥ from (158, 26)
340 : : [++disjoint (animal,plant)] : spm(180,337) **¥ from (71, 215)
373 : : [--instance(X1,plant) ,--instance(X1,animal)] : spm(176,372) *** from (48, 340)
387 : neg : [-—instance(eskl_0,animal)] : spm(386,121) **E from (373, 26)
436 neg : [++instance(X1,animal),--part(esk2.0,X1),--$true,--instance(X1,object),
—-instance(X1,organism)] : rw(187,247) *** from (183, 239)
439 : neg : [++instance(esk1_0,animal),--instance(esk1_0,object),--instance(eskl_0,organism)]
spm(438,124) *** from (436, 25)
440 : neg : [++instance(esk1_0,animal) ,,--$true,--instance(eskl1_0,organism)] : rw(439,120) *** from (439, 28)
441 : neg : [++instance(esk1_0,animal) ,--$true,--$true] : rw(440,257) **¥ from (440, 249)
442 : neg : [++instance(esk1_0,animal)] : cn(441)
443 : neg : [1 : sr(442,395) **¥ from (442, 387)
444 : neg : []1 : 443 : ’proof’
Figure 4: Do Plants Have Brain?
KYOTO: ICT-211423 April 28, 2010

	Introduction
	Suggested Upper Merged Ontology
	First-Order Language and KIF
	First-Order Theorem Proving
	Translating Second-Order Features of SUMO
	First Step
	Second Step: Row Variables

	Detecting Inconsistencies
	Unfinished Definitions
	Translation of Type Information
	Unexpected Results from Type Information in SUMO
	Translation of Type Information in SUMO into First-Order Formulae
	Incompatibility of Type Information with the Structure of SUMO

	Adimen-SUMO: Our Proposal to Use SUMO with FOL-Theorem Provers
	Conclusions
	Acknowledgement
	Analyzing Traces of FOL-Theorem Provers
	Using Adimen-SUMO for Automated Reasoning
	Translating SUMO into FOL-Formulae: A Detailed Example
	Resources

