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INTRODUCTION 
 
Unity is a cross-platform game engine developed by Unity Technologies, first announced 
and released in June 2005 at Apple Inc.’s Worldwide Developers Conference as an OS 
X-exclusive​ ​game engine. As of 2018, the engine has been extended to support 27 platforms 
and has more applications than just game development. 
 
ML-Agents is one such application in the shape of an open-source Unity plugin that enables 
games and simulations to serve as environments for training intelligent agents. Agents can 
be trained using reinforcement learning, imitation learning, neuroevolution, or other machine 
learning methods through a simple-to-use Python API. The availability of this plugin and the 
engine itself makes it an interesting option to further delve into more complex topics within 
AI. And so, the purpose of this document is to show some basic usage of said plugin as well 
as the some of the theoretical background upon which it’s constructed. 
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PRACTICAL APPLICATION EXAMPLE 

 
Upon starting the engine with the project we will find ourselves in this type of scenario. In 
here we can access to the different demo scenes to train our agents. However, to do so we 
have to set some things first. First of all is selecting the scene and within it we have to set 
the Brain script’s type to External. Said Brain the Agents use will be a child of the Academy 
in the Unity scene hierarchy. After that the scene has to be saved and then a game built 
from our selected scene. 
 
A command or terminal window has to be opened after this and optionally navigate to the 
folder in which the copy of the project (not the game we just built) is. From here the next 
command has to be run: 

  mlagents-learn <trainer-​config​​-path> --​run​​-id=<​run​​-identifier> --train 

- <trainer-​config​​-​path​​> ​is the relative or absolute file path of the trainer 
configuration. The defaults used by example environments included in the project 
can be found in config/trainer_config.yaml. 

- <​run​​-identifier>​ is a string used to separate the results of different training runs. 
- --train​ tells​ mlagents-learn​ to run a training session (rather than inference). 

This will launch a training session with Reinforcement Learning as it’s main method. Said 
training session can be stopped by pressing Ctrl+C. The trained model will be at 
models/​<​run-identifier​​>​/editor_​<​academy_name​​>​_​<​run-identifier​​>​.bytes​ where 
<academy_name>​ is the name of the Academy GameObject in the current scene. This file 
corresponds to the model's latest checkpoint. This training model can now be embed to an 
Internal Brain by dragging the trained model to the Graph Model placeholder in the scene’s 
Brain inspector window. To finally witness it in action we only have to press the Play button 
of the scene. 



 
Of course, some explanations are due to what some of these terms mean and what part they 
take in the agent training process. 
 
An Academy orchestrates all the Agent and Brain objects in a Unity scene. Every scene 
containing Agents must contain a single Academy. To use an Academy, a subclass must be 
created. However, all the methods that can be overridden are optional. The Academy’s 
methods allow to do the following: 

- Initialize the environment after the scene loads 
- Reset the environment 
- Change things in the environment at each simulation step 

 
The Brain encapsulates the decision making process. Every Agent must be assigned a 
Brain, but the same Brain can be used with more than one Agent. Several Brains can be 
created, which can be associated to one or more Agents. The toolkit has up to 4 Brain types 
implemented: 

- External​​: Used when training agents, It can also be used to communicate with a 
Python script. 

- Internal​​: Used to make use of a trained model. 
- Heuristic​​: Used to hand-code the Agent's logic by extending the Decision class. 
- Player​​: Used to map keyboard keys to Agent actions, which can be useful to test the 

Agent code. 
The Brain class has several important properties that can set using the Inspector window, 
located on the right side of the engine. These properties must be appropriate for the Agents 
using the Brain. The Brain Inspector window in the Unity Editor displays the properties 
assigned to a Brain component in this fashion: 

 
 
 
These properties include 
things such as: vector 
observations, visual 
observation, and vector 
actions for the Brain, 
height, width, and 
whether to grayscale 
visual observations for 
the Brain, action 
descriptors, arrays of 
discrete actions, length of 
action vector for the 
Brain, etc. 
 
 
 

 



The project includes a Python API that allows direct interaction with the Unity game engine 
as well as a collection of trainers and algorithms to train agents in Unity environments. This 
package contains 2 components: a low level API which allows the direct interaction with a 
Unity Environment (mlagents.envs) and an entry point to train (mlagents-learn) which allows 
the training of agents in Unity Environments using implementations of reinforcement learning 
or imitation learning. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



THEORY 
 
Machine learning 
Machine learning, a branch of artificial intelligence, focuses on learning patterns from data. 
The three main classes of machine learning algorithms include: unsupervised learning, 
supervised learning and reinforcement learning. Each class of algorithm learns from a 
different type of data. 
 
Unsupervised learning 
In this type of learning you only have input data (X) and no corresponding output variables. 
The goal for unsupervised learning is to model the underlying structure or distribution in the 
data in order to learn more about the data. These are called unsupervised learning because 
there is no correct answers and there is no ‘teacher’. Algorithms are left to their own devises 
to discover and present the interesting structure in the data.  
 
Unsupervised learning problems can be further grouped into clustering and association 
problems. 

● Clustering​​: A clustering problem is where you want to discover the inherent 
groupings in the data, such as grouping customers by purchasing behavior. 

● Association​​:  An association rule learning problem is where you want to 
discover rules that describe large portions of your data, such as people that 
buy X also tend to buy Y. 

Some popular examples of unsupervised learning algorithms are k-means and Apriori 
algorithms. 

 
Supervised learning 
 
In supervised learning, it isn’t wanted to just group similar items but directly learn a mapping 
from each item to the group (or class) that it belongs to. This method will have some input 
variables (x) and an output variable (Y) and you use an algorithm to learn the mapping 
function from the input to the output. It is called supervised learning because the process of 
an algorithm learning from the training dataset can be thought of as a teacher supervising 
the learning process. We know the correct answers, the algorithm iteratively makes 
predictions on the training data and is corrected by the teacher. Learning stops when the 
algorithm achieves an acceptable level of performance. Supervised learning problems can 
be further grouped into regression and classification problems. 

● Classification​​: A classification problem is when the output variable is a 
category, such as “red” or “blue” or “disease” and “no disease”. 

● Regression​​: A regression problem is when the output variable is a real value, 
such as “dollars” or “weight”. 

Some common types of problems built on top of classification and regression include 
recommendation and time series prediction respectively. Some popular examples of 
machine learning algorithms are the following: Linear regression, Random forest and 
Support vector machines. 



 
For both supervised and unsupervised learning, there are two tasks that need to be 
performed: attribute selection and model selection. Attribute selection (also called feature 
selection) pertains to selecting how we wish to represent the entity of interest. Model 
selection, on the other hand, pertains to selecting the algorithm (and its parameters) that 
perform the task well. Both of these tasks are active areas of machine learning research 
and, in practice, require several iterations to achieve good performance. 
 

Reinforcement learning 
 
Reinforcement learning can be viewed as a form of learning for sequential decision making 
that is commonly associated with controlling robots. Consider an autonomous firefighting 
robot that is tasked with navigating into an area, finding the fire and neutralizing it. At any 
given moment, the robot perceives the environment through its sensors, processes this 
information and produces an action. In other words, it is continuously making decisions 
about how to interact in this environment given its view of the world and objective. Teaching 
a robot to be a successful firefighting machine is precisely what reinforcement learning is 
designed to do. The goal of reinforcement learning is to learn a policy, which is essentially a 
mapping from observations (what the robot can measure from its environment) to actions(is 
a change to the configuration of the robot). 
 
One common aspect of all three branches of machine learning is that they all involve a 
training phase and an inference phase. While the details of the training and inference 
phases are different for each of the three, at a high-level, the training phase involves building 
a model using the provided data, while the inference phase involves applying this model to 
new, previously unseen, data. 
 

TensorFlow 
 
Many of the algorithms that are provided in the ML-Agents toolkit leverage some form of 
deep learning. More specifically, the implementations are built on top of the open-source 
library TensorFlow. This means that the models produced by the ML-Agents toolkit are in a 
format only understood by TensorFlow. 
 
TensorFlow is an open source library for performing computations using data flow graphs, 
the underlying representation of deep learning models. Thanks to it’s flexibility It facilitates 
training and inference on CPUs and GPUs in a desktop, server, or mobile device. Within the 
ML-Agents toolkit, when you train the behavior of an agent, the output is a TensorFlow 
model (.bytes) file that you can then embed within an Internal Brain. Unless a new algorithm 
is implemented, the use of TensorFlow is mostly abstracted away and behind the scenes. 
 

 
 



Types of training 
 
Proximal Policy Optimization:  
PPO uses a neural network to approximate the ideal function that maps an agent's 
observations to the best action an agent can take in a given state, actualizing it’s policies as 
it learns. 

 
Curriculum training: 
Curriculum learning is a way of training a machine learning model where more difficult 
aspects of a problem are gradually introduced in such a way that the model is always 
optimally challenged. 

 
 
 
Imitation training: 
It is often more intuitive to simply demonstrate the behavior we want an agent to perform, 
rather than attempting to have it learn via trial-and-error methods. The imitation learning 
algorithm will use the pairs of observations and actions from the human player to learn a 
policy. The idea of teaching by imitation has been around for many years; however, the field 
is gaining attention recently due to advances in computing and sensing as well as rising 
demand for intelligent applications. 
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