

OpenAI GYM

Oier Eguiazabal & David Max [ATAI 18-19]

Index

1.- What’s OpenAI Gym? 2

2.- Installation and use of OpenAI Gym 3

3.- Reinforced Learning 6

4.- References 8

1

Oier Eguiazabal & David Max [ATAI 18-19]

 What’s OpenAI Gym?

OpenAI is a non-profit research company that is focussed on building out AI in a way that is
good for everybody. It was founded by Elon Musk and Sam Altman. OpenAI’s mission as
stated on their website is to “build safe AGI, and ensure AGI’s benefits are as widely and
evenly distributed as possible”.

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms. It
supports teaching agents everything from walking to playing games like pong or pinball.
Gym is an open source interface to reinforcement learning tasks. Gym provides an
environment and its is upto the developer to implement any reinforcement learning
algorithms.

Among the vast quantity of environments available for OpenAI Gym, there are a lot of ATARI
2600 games for you to take the challenge of achieving the highest score possible.

But enough boring talk about the background of OpenAI Gym, let’s go to the fun part!

2

Oier Eguiazabal & David Max [ATAI 18-19]

Installation and use of OpenAI Gym

The installation guide of the toolkit that we will provide is meant to be followed by a computer
with Ubuntu SO, and python3 or greater.
First of all, you have to install python 3, the numpy library, python3-pip, and some other
libraries and tools, with this commands:

After that, you will clone the github repository to your computer, and proceed to install the
toolkit:

With those two steps, the installation will be completed, so let’s see how you can use
OpenAI Gym to develop some projects.

Now you have to open your python editor, and begin importing gym, and numpy libraries like
this:

Then you create an environment, and after that, reset to initialize it:

In this case, the environment created will be a big square, with a yellow square inside it
which represents the taxi, “|” character that represent a wall, and 4 letters, one blue colored
that represent the pick-up location, and another one purple where is the drop-off location.
When the taxi has a passenger, the color will turn green.

After this, you can see the initial state of the problem with this line:

3

Oier Eguiazabal & David Max [ATAI 18-19]

Now you should start making some actions to see how the problem changes, the available
actions in the environment, can be seen with that line:

The first line just tell you how many actions can be done with an integer, and the second one
will tell you to what action corresponds each number.

So, in this case of the taxi environment the number 1 corresponds to ‘move up one position’,
if you want to make this movement you have to use the step() method like this:

 The step() method will return four variables that you will call: state, reward, done and info.

The ‘state’ variable corresponds to the new state that will take the environment, ‘reward’
makes reference to what will earn our agent making that action, ‘done’ will be a boolean
stating whether the environment is terminated or done, and ‘info’ will be extra information for
debugging.

When the taxi successfully pick up a passenger and drop them off at their desired location,
you will receive a reward of 20 pints and ‘done’ will equal ‘True’, and for each time the agent
incorrectly pick up or drop off a passenger, the environment will give a -10 reward.

To solve the environment, and evaluate the agent’s performance, you have to compare it to
a completely random agent, and to choose a random action you can use
‘env.action_space.sample()’ like this:

And now you can create a loop to solve randomly the environment.
You can also put a ‘counter’ variable to see how many steps it takes to solve it.

This method will take 2000+ steps on average, to solve the environment, so in order to
improve it, and maximize the reward, we will have to have the algorithm remember its
actions and their associated rewards.

4

Oier Eguiazabal & David Max [ATAI 18-19]

The algorithm memory is going to be a Q action value table.

You also have to define some variables like ‘G’ where you will accumulate the total reward,

and ‘alpha’ that is a learning rate, and each one can use what he likes, in my case 0.618.

And then we can implement a basic Q learning algorithm like that:

This algorithm will solve the problems, basing each action on a estimated reward, thanks to
the formula which decides what action to make in each state.

5

Oier Eguiazabal & David Max [ATAI 18-19]

Reinforced Learning

Reinforcement learning, explained simply, is a computational approach where an agent
interacts with an environment by taking actions in which it tries to maximize an accumulated
reward. Here is a simple graph, which I will be referring to often:

An agent in a current state (S​t​) takes an action (A​t​) to which the environment reacts and
responds, returning a new state(S​t+1​) and reward (R​t+1​) to the agent. Given the updated state
and reward, the agent chooses the next action, and the loop repeats until an environment is
solved or terminated.

These four variables are: the new ​state (S​t+1 = 14) (S​t is a number in the range 0..n-1, where
n is the number of possible states in the environment.), ​reward (R​t+1 = -1), a boolean stating
whether the environment is terminated or ​done​​, and extra ​info for debugging. Every Gym
environment will return these same four variables after an action is taken, as they are the
core variables of a reinforcement learning problem.

You may luck out and solve the environment fairly quickly, but on average, a completely
random policy will solve this environment in about 2000+ steps, so in order to maximize our
reward, we will have to have the algorithm remember its actions and their associated
rewards. In this case, the algorithm’s memory is going to be a Q action value table. To
manage this Q table, we will use a NumPy array. The size of this table will be the number of
states (500) by the number of possible actions (6).

Number of
possible
states (s)

← Number of possible actions (a) →

Q(0, 0) ... Q(0, a)

...

Q(s, 0) ... Q(s, a)

6

Oier Eguiazabal & David Max [ATAI 18-19]

Over multiple episodes of trying to solve the problem, we will be updating our Q values,
slowly improving our algorithm’s efficiency and performance. We will also want to track our
total accumulated reward for each episode, which we will define as ​G​​.

Similar to most machine learning problems, we will need a learning rate as well. I will use my
personal favorite of 0.618, also known as the mathematical constant phi.

for episode in range(1,1001):

done = False
G, reward = 0,0
state = env.reset()
while done != True:
 action = np.argmax(Q[state]) #1
 state2, reward, done, info = env.step(action) #2
 Q[state,action] += alpha * (reward + np.max(Q[state2]) - Q[state,action]) #3
 G += reward
 state = state2
if episode % 50 == 0:

print('Episode {} Total Reward: {}'.format(episode,G))

This code alone will solve the environment. There is a lot going on in this code, so I will try
and break it down.
First (#1): The agent starts by choosing an ​action with the highest ​Q value for the current
state using argmax. Argmax will return the index/action with the highest value for that state.
Initially, our Q table will be all zeros. But, after every step, the Q values for state-action pairs
will be updated.
Second (#2): The agent then takes ​action and we store the future state as ​state2 ​​(S​t+1​). This
will allow the agent to compare the previous state to the new state.
Third (#3): We update the state-action pair (S​t , A​t​) for ​Q ​​using the ​reward​​, and the max ​Q
value for ​state2 ​​(S​t+1​). This update is done using the action value formula (based upon the
Bellman equation) and allows state-action pairs to be updated in a recursive fashion (based
on future values). See Figure 2 for the value iteration update.

7

Oier Eguiazabal & David Max [ATAI 18-19]

References

Introduction to reinforcement learning and OpenAI Gym

Github

Understanding OpenAI Gym

Complete OpenAI Guide

Official Webpage

8

https://www.oreilly.com/learning/introduction-to-reinforcement-learning-and-openai-gym
https://github.com/openai/gym
https://medium.com/@ashish_fagna/understanding-openai-gym-25c79c06eccb
https://arxiv.org/pdf/1606.01540.pdf
https://gym.openai.com/

