Jason: A Java-based interpreter for

an extended version of AgentSpeak
developed by
Rafael H. Bordini and Jomi F. Hibner
http://jason.sourceforge.net/Jason.pdf

The work leading to Jason received many contributions, in
particular from: Michael Fisher, Joyce Martins, Alvaro F.
Moreira, Renata Vieira, Willem Visser, Michael Wooldridge,

and many others

http://jason.sourceforge.net/Jason.pdf

Jason

Part 1

What is AgentSpeak?

What is Jason?

Features

Basic Notions

AgentSpeak(L) Syntax
AgentSpeak(L) Informal Semantics
Jason Reasoning Cycle

A Simple Examples

What is AgentSpeak?

* A simple but powerful programming language
for building rational agents based on the
Belief-Desire-Intention paradigm.

* |Intellectual heritage:

— The Procedural Reasoning Systems (PRS)

developed at Stanford Research Institute in late
1980s

— Logic Programming/Prolog

What is Jason?

Jason y Medea, de Gustave
Moreau (Museo de Orsay).

Jason is the first fully-fledged mterpreter
for a much improved version of
AgentSpeak, including also speech-act
based inter-agent communication.

https://es.wikipedia.org/wiki/Medea_(mitolog%C3%ADa)
https://es.wikipedia.org/wiki/Gustave_Moreau
https://es.wikipedia.org/wiki/Gustave_Moreau
https://es.wikipedia.org/wiki/Gustave_Moreau
https://es.wikipedia.org/wiki/Museo_de_Orsay

Features (1)

* Strong negation, so both closed-world assumption and
open-world are available;

— Closed World Assumption: anything that is neither known to be true, nor
derivable from the known facts or inferences, is assumed to be false.

- “not” operator means that the negation of the formula is true if the
interpreter fails to to derive the formula given the fatcs and rules.

“u n
~

or strong negation means that the formula is false.

— Example:
* colour(box1,white), when the agent believes that box1 is white.
* ~colour(box1,white), when the agent belives that box1 is not white.

* If both (not p) and (not ~p) are true, the agent has no information about
whether p is true or not

Features (2)

Speech-act based inter-agent communication (and belief
annotations on information sources);

Possibility to run a multi-agent system distributed over a
network (using SACI);

A library of essential “internal actions” which are
programmed in Java.

Handling of plan,

http://www.emse.fr/~boissier/enseignement/maop12/doc/jason-api/jason/asSemantics/class-use/DefaultInternalAction.html

Basic Notions

An AgentSpeak(L) agent is created by the
specification of a set of base beliefs and a set of
plans.

A belief atom is simply a first-order predicate in the
usual notation- publisher(wiley)

A triggering event defines which events may initiate
the execution of a plan.

The goals are also predicates prefixed with operators:
‘I’ (achievement goals)- 'write(book) and ‘?’ (test
goals)- ?publisher(P)

Basic Notions

* An event can be internal, when a subgoal needs to
be achieved, or external, when generated from
belief updates as a result of perceiving the
environment.

* There are two types of triggering events: those
related to the addition (‘+') and deletion (‘-’) of
mental attitudes (beliefs or goals).

* Plans refer to the basic actions that an agent is able
to perform on its environment.

Basic Notions

* Actions are also defined as first-order predicates, but
with special predicate symbols (called action

symbols) used to distinguish them from other
predicates.

. /A plan is formed by a triggering event (denoting the\
purpose for that plan), followed by a conjunction of

belief literals representing a context (applicable) and
a sequence of basic actions or (sub)goals:

_triggering_event : context <- body. J
+concert(A,V) : likes(A) « 'book_tickets(A,V).
+!book_tickets(A,V) : =busy(phone) «

call(V); .. .; 'choose_seats(A,V).

Basic Notions

* Triggering event s:

+b (belief addition)

-b (belief deletion)

+!g (achievement-goal addition)
-1g (achievement-goal deletion)
+?g (test-goal addition)

-?7g (test-goal deletion)

10

AgentSpeak(L) Syntax

ag ::= bs ps
bs::=atl....atn.(n =0)

at ::=P(t1,...,tn) (n =0)
ps:=pl...pn(n=1)
p:=te:ct<-h.
tex=+at|-at|+g | -g
cti=true | 11&...&In(n=1)

h:=true | fl1;...;fn(n2=1)

| ::= at | not at
fou=At1,...tn) | g|lu(n=0)
g 'atl?at

u::=+at | -at

ag- agent ::= bs- belives ps- plans

p ::= te-trigering event : ct-context
<- h- sequence of actions, goals,
or belief updates.

at - addition or the deletion of a
belief

g- addition or the deletion of a goal

A(t1,,tn) - accion

11

Jason Reasoning Cycle

Beliefs Belief
J Base
+ Belie f;f, -
Perception| Event
| \ _/ Venis
EEKtEH}HJ-. ., . l‘ E'.'e[“‘g . ./_ &
vents .
" Selected - g
_ Event e
Internal o

Plan

Library|

Events B " Plans
ﬁ -
[Unify ’

\ Event
Felevant K

J Beliefs

Plans

F
Lhify

C‘onrgy ” Intended
-_I_'-Ieaﬂs
Intentions
Intentions Push e New
Subplan 5 _ _‘-_]-?t_ennﬂn
: New : |

AgentSpeak(L) Agent

Beliefs

Selected /’ \&
Intention Eyeeyre Acrion
Q@ﬂ I‘Eﬂy

L']:l date
i Intention

12

A Simple Example
Collecting Garbage

The scenario used here involves two robots that are collecting garbage on planet

Mars(1). Robot r1 searches for pieces of garbage and when one is found, the
robot picks it up, take it to the location of r2, drops the garbage there, and
return to the location where it found the garbage and continues its search from
that position. Robot r2 is situated at an incinerator; whenever garbage is taken
to its location by r1, r2 just puts it in the incinerator.

(1) Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge. Verifiable multi-agent
programs. M. Dastani, J. Dix, A. El Fallah-Seghrouchni (Eds.) In Proceedings of the First International
Workshop on Programming Multiagent Systems: languages, frameworks, techniques and tools
(ProMAS-03). LNAI 3067, pp. 72-89 Springer-Verlag Berling Heidelberg 2004.

13

A Simple Examples: Collecting Garbage

Agent rl
Beliefs
pos(r2, 2, 2).
checking(slots).
Plans
+pos(rl, X, Y) : checking(slots) & not garbage(r1)

(p1)

<- next(slot). (simple action)

+garbage(rl) : checking(slots) (p2)

<- Istop(check); 'take(garb,r2); !continue(check).
+Istop(check) : true

<- ?pos(ri, X, Y); +pos(back, X, Y); -checking(slots).
+!take(S, L) : true

<-lensure_pick(S); !'go(L); drop(S).

(p3)

(p4)

14

A Simple Examples: Collecting Garbage

Agent ril
Plans

+!ensure_pick(S) : garbage(r1) (p5)

<- pick(garb); 'ensure_pick(S).
+!ensure_pick(S) : true <- true. (p6)
+!continue(check) : true (p7)

<- lgo(back); -pos(back, X, Y); +checking(slots); next(slot).
+!go(L) : pos(L, X, Y) & pos(ri, X, Y) (p8)

<- true.
+!go(L) : true (p9)

<- ?pos(L, X, Y); moveTowards(X, Y); !'go(L).

15

A Simple Examples: Collecting Garbage

+garbage(r2) : true

<- burn(garb).

Agent r2

16

Jason

Part 2

* Others Jason Notions

* Semantics to communication

* Complete Jason Reasoning Cycle
* Other Simple Examples

* MAS Configuration File

* Conclusion

17

Others Jason Notions

* Belief annotation:
— blue(box1)[source(ag1)].
— red(box1)[source(percept)].
— colourblind(ag1)[source(self), doc(0.7)].
— lier(agl)[source(self), doc(0.2)].
* The operator ‘~’ is used for strong negation:
+!leave(home) : not raining & not ~raining
<- open(curtains); ...

18

Others Jason Notions

* |nternal action:
.desire(literal)
.intend(literal)
.drop_desires(literal)
.drop_intentions(literal)

* |nternal action for communication:
.send(receiver, ilf, predicate-content) where
ilf € {tell, untell, achieve, unachieve,

askOne, askAll, askHow, tell[How, untellHow, ...

19

Semantics to communication

* The Knowledge Query and Manipulation Language
(KQML) is a language that adds intentional context:

* tell : Sinforms R that the sentence in the message content
is true of S;

* untell: the message content is not in the knowledge base
of S;

* achieve: Srequests that R try to achieve a state of the
world where the message content is true;

* unachieve: S wants to revert the effect of an achieve
previously sent.

* http://
imvidal.cse.sc.edu/talks/agentcommunication/kgmlperfor
matives.html

20

http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html

MAS Configuration File

MAS my_system {
infrastructure: Jade
environment: MyEnv
ExecuctionControl: ...
agents: agl; ag2; ag3;

5

* Multiple instances of an agent

agents: agl #10;

21

Conclusion

Jason was implemented in Java by Rafael H. Bordini and Jomi F. Hiibner
with contributions from various colleagues.

Research in the area of agent-oriented programming languages is still
incipient, so we expect much progress from research in the area.

Jason is distributed completely on an “as is” basis.

It has been developed during our spare time, we cannot guarantee
much support.

If you have questions or bug reports, you are welcome to use the
mailing lists at SourceForge:

* jason-announcement@Ilists.sourceforge.net (where we announce
new releases and important news about Jason)

* jason-users@lists.sourceforge.net (for questions about using Jason
* jason-bugs@lists.sourceforge.net (to report bugs)

I

)

22

