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Abstract

This paper presents a method that
conbines a set of unsupervised algorithms in
order to accurately build large taxonomies
from any machine-readable dictionary
(MRD). Our aim is to profit from
conventional MRDs, with no explicit
semantic coding. We propose a system that
1) performs fully automatic extraction of
taxonomic links from MRD entries and 2)
ranks the extracted relations in a way that
selective manual refinement is allowed.
Tested accuracy can reach around 100%
depending on the degree of coverage
selected, showing that taxonomy building
is not limited to structured dictionaries
such as LDOCE.

1 Introduction

There is no doubt about the increasing need of
owning accurate and broad coverage general
lexical/semantic resources for developing NL
applications. These resources include Lexicons,
Lexical Databases, Lexical Knowledge Bases
(LKBs), Ontologies, etc. Many researchers believe
that for effective NLP it is necessary to build a
LKB which contain class/subclass relations and
mechanisms for the inheritance of properties as
well as other inferences. The work presented here
attempts to lay out some solutions to overcome or
alleviate the "lexical bottleneck" problem
(Briscoe 91) providing a methodology to build
large scale LKBs from conventional dictionaries,
in any language. Starting with the seminal work
of (Amsler 81) many systems have followed this
approach (e.g., Bruce et al. 92; Richardson 97).
Why should we propose another one?

Regarding the resources used, we must point out
that most of the systems built until now refer to
English only and use rather rich, well structured,
controlled and explicitly semantically coded
dictionaries (e.g. LDOCE 87). This is not the case
for most of the available sources for languages

other than English. Our aim is to use conventional
MRDs, with no explicit semantic coding, to obtain
a comparable accuracy.

The system we propose is capable of 1)
performing fully automatic extraction (with a
counterpart in terms of both recall and precision
fall) of taxonomic links of dictionary senses and 2)
ranking the extracted relations in a way that
selective manual refinement is allowed.

Section 2 shows that applying a conventional
pure descriptive approach the resulting
taxonomies are not useful for NLP. Our approach
is presented in the rest of the paper. Section 3
deals with the automatic selection of the main
semantic primitives present in Dicc ionar io
General Ilustrado de la Lengua Española  (DGILE
87), and for each of these, section 4 shows the
method for the selection of its most
representative genus terms. Section 5 is devoted to
the automatic acquisition of large and accurate
taxonomies from DGILE. Finally, some conclusions
are drawn.

2 Acquiring taxonomies from MRDs

A straightforward way to obtain a LKB
acquiring taxonomic relations from dictionary
definitions can be done following a purely bottom
up strategy with the following steps: 1) parsing
each definition for obtaining the genus, 2)
performing a genus disambiguation procedure, and
3) building a natural classification of the concepts
as a concept taxonomy with several tops.
Following this purely descriptive methodology,
the semantic primitives of the LKB could be
obtained by collecting those dictionary senses
appearing at the top of the complete taxonomies
derived from the dictionary. By characterizing
each of these tops, the complete LKB could be
produced. For DGILE, the complete noun taxonomy
was derived following the automatic method
described by (Rigau et al. 97)1.

1This taxonomy contains 111,624 dictionary senses and
has only 832 dictionary senses which are tops of the
taxonomy (these top dictionary senses have no



However, several problems arise a) due to the
source (i.e, circularity, errors, inconsistencies,
omitted genus, etc.) and b) the limitation of the
genus sense disambiguation techniques applied:
i.e, (Bruce et al. 92) report 80% accuracy using
automatic techniques, while (Rigau et al. 97)
report 83%. Furthermore, the top dictionary
senses do not usually represent the semantic
subsets that the LKB needs to characterize in
order to represent useful knowledge for NLP
systems. In other words, there is a mismatch
between the knowledge directly derived from an
MRD and the knowledge needed by a LKB.

To illustrate the problem we are facing, let us
suppose we plan to place the FOOD concepts in
the LKB. Neither collecting the taxonomies
derived from a top dictionary sense (or selecting a
subset of the top dictionary senses of DGILE)
closest to FOOD concepts (e.g., subs tanc ia
-substance-), nor collecting those subtaxonomies
starting from closely related senses (e.g., bebida
-drinkable liquids- and alimento -food-) we are
able to collect exactly the FOOD concepts present
in the MRD. The first are too general (they would
cover non-FOOD concepts) and the second are too
specific (they would not cover all FOOD
dictionary senses because FOODs are described in
many ways).

All these problems can be solved using a mixed
methodology. That is, by attaching selected top
concepts (and its derived taxonomies) to
prescribed semantic primitives represented in the
LKB. Thus, first, we prescribe a minimal ontology
(represented by the semantic primitives of the
LKB) capable of representing the whole lexicon
derived from the MRD, and second, following a
descriptive approach, we collect, for every
semantic primitive placed in the LKB, its
subtaxonomies. Finally, those subtaxonomies
selected for a semantic primitive are attached to
the corresponding LKB semantic category.

Several prescribed sets of semantic primitives
have been created as Ontological Knowledge
Bases: e.g. Penman Upper Model (Bateman 90),
CYC (Lenat & Guha 90), WordNet (Miller 90).
Depending on the application and theoretical
tendency of the LKB different sets of semantic
primitives can be of interest. For instance,
WordNet noun top unique beginners are 24
semantic categories. (Yarowsky 92) uses the 1,042
major categories of Roget’s thesaurus, (Liddy &
Paik 92) use the 124 major subject areas of LDOCE,

hypernyms), and 89,458 leaves (which have no
hyponyms). That is, 21,334 definitions are placed
between the top nodes and the leaves.

(Hearst & Schütze, 95) convert the hierarchical
structure of WordNet into a flat system of 726
semantic categories.

In the work presented in this paper we used as
semantic primitives the 24 lexicographer’s files
(or semantic files) into which the 60,557 noun
synsets (87,641 nouns) of WordNet 1.5 (WN1.5)
are classified2 . Thus, we considered the 24
semantic tags of WordNet as the main LKB
semantic primitives to which all dictionary
senses must be attached. In order to overcome the
language gap we also used a bilingual
Spanish/English dictionary.

3 Attaching DGILE dictionary senses to
semantic primitives

In order to classify all nominal DGILE senses
with respect to WordNet semantic files, we used
a similar approach to that suggested by
(Yarowsky 92). Rather than collect evidence from
a blurred corpus (words belonging to a Roget’s
category are used as seeds to collect a subcorpus for
that category; that is, a window context produced
by a seed can be placed in several subcorpora), we
collected evidence from dictionary senses labelled
by a conceptual distance method (that is, a
definition is placed in one semantic file only).

This task is divided into three fully automatic
consecutive subtasks. First, we tag a subset (due to
the difference in size between the monolingual
and the bilingual dictionaries) of DGILE
dictionary senses by means of a process that uses
the conceptual distance formula; second, we
collect salient words for each semantic file; and
third, we enrich each DGILE dictionary sense
with a semantic tag collecting evidence from the
salient words previously computed.

3.1 Attach WordNet synsets to DGILE
headwords.

For each DGILE definition, the conceptual
distance between headword and genus has been
computed using WN1.5 as a semantic net. We
obtained results only for those definitions having
English translations for both headword and
genus. By computing the conceptual distance
between two words (w1,w2) we are also selecting

those concepts (c1i,c2j) which represent them and

seem to be closer with respect to the semantic net

2One could use other semantic classifications because
using this methodology a minimal set of informed seeds
are needed. These seeds can be collected from MRDs,
thesauri or even by introspection, see (Yarowsky 95).



used. Conceptual distance is computed using
formula (1).

(1)  dist(w1,w2 ) = min
c1i

∈w1

c2i
∈w2

1

depth(ck )ck ∈path(c1i
,c2i

)
∑

That is, the conceptual distance between two
concepts depends on the length of the shortest
path3 that connects them and the specificity of
the concepts in the path.

Noun definitions 93,394

Noun definitions with genus 92,693

Genus terms 14,131

Genus terms with bilingual translation 7,610

Genus terms with WN1.5 translation 7,319

Headwords 53,455

Headwords with bilingual translation 11,407

Headwords with WN1.5 translation 10,667

Definitions with bilingual translation 30,446

Definitions with WN1.5 translation 28,995

Table 1, data of first attachment using conceptual
distance.

As the bilingual dictionary is not
disambiguated with respect to WordNet synsets
(every Spanish word has been assigned to all
possible connections to WordNet synsets), the
degree of polysemy has increased from 1.22
(WN1.5) to 5.02, and obviously, many of these
connections are not correct. This is one of the
reasons why after processing the whole
dictionary we obtained only an accuracy of 61% at
a sense (synset) level (that is, correct synsets
attached to Spanish headwords and genus terms)
and 64% at a file level (that is, correct WN1.5
lexicographer’s file assigned to DGILE dictionary
senses)4 . We processed 32,2085  dictionary
definitions, obtaining 29,205 with a synset
assigned to the genus (for the rest we did not
obtain a bilingual-WordNet relation between the
headword and the genus, see Table 1).

In this way, we obtained a preliminary
version of 29,205 dictionary definitions
semantically labelled (that is, with Wordnet
lexicographer’s files) with an accuracy of 64%.
That is, a corpus (collection of dictionary senses)

3We only consider hypo/hypermym relations.
4To evaluate this process, we select at random a test set
with 391 noun senses that give a confidence rate of 95%.
5The difference with 30,446 is accounted for by repeated
headword and genus for an entry.

classified in 24 partitions (each one corresponding
to a semantic category). Table 2 compares the
distribution of these DGILE dictionary senses (see
column a) with respect to WordNet semantic
categories. The greatest differences appear with
the classes ANIMAL and PLANT, which
correspond to large taxonomic scientific
classifications occurring in WN1.5 but which do
not usually appear in a bilingual dictionary.

3.2 Collect the salient words for every semantic
primitive.

Once we have obtained the first DGILE
version with semantically labelled definitions,
we can collect the salient words (that is, those
representative words for a particular category)
using a Mutual Information-like formula (2),
where w means word and SC semantic class.

(2)   AR(w,SC) = Pr(w|SC) log2

Pr(w|SC)
Pr(w)

Intuitively, a salient word6  appears
significantly more often in the context of a
semantic category than at other points in the
whole corpus, and hence is a better than average
indicator for that semantic category. The words
selected are those most relevant to the semantic
category, where relevance is defined as the
product of salience and local frequency. That is to
say, important words should be distinctive and
frequent.

We performed the training process considering
only the content word forms from dictionary
definitions and we discarded those salient words
with a negative score. Thus, we derived a lexicon
of 23,418 salient words (one word can be a salient
word for many semantic categories, see Table 2,
columns b and c).

3.3 Enrich DGILE definitions with WordNet
semantic primitives.

Using the salient words per category (or
semantic class) gathered in the previous step we
labelled the DGILE dictionary definitions again.

When any of the salient words appears in a
definition, there is evidence that the word
belongs to the category indicated. If several of
these words appear, the evidence grows.

6Instead of word lemmas, this study has been carried out
using word forms because word forms rather than
lemmas are representative of typical usages of the
sublanguage used in dictionaries.



Semantic file #DGILE
senses (a)

#Content
words(b)

#Salient
words(c)

#DGILE
senses (d)

#WordNet
synsets

03 tops 77 (0.2%) 540 - - 35 (0.0%)

04 act 3,138 (10.7%) 16,963 2,593 4,188 (4.8%) 4895 (8.0%)

05 animal 712 (2.4%) 6,191 849 4,544 (5.2%) 7,112 (11.7%)

06 artifact 6,915 (23.7%) 45,988 4,515 12,958 (14.9%) 9,101 (15.0%)

07attribute 2,078 (7.1%) 11,069 1,571 4,146 (4.8%) 2,526 (4.2%)

08 body 621 (2.1%) 4,285 665 3,208 (3.6%) 1,370 (2.3%)

09 cognition 1,556 (5.3%) 9,699 1,362 3,672 (4.2%) 2,007 (3.3%)

10 communication 4,076 (13.9%) 24,633 3,301 6,012 (6.9%) 4,115 (6.8%)

11 event 541 (1.8%) 3,071 477 1,544 (1.7%) 752 (1.2%)

12 feeling 306 (1.0%) 1,623 263 1,016 (1.2%) 397 (0.6%)

13 food 749 (2.5%) 4,679 717 2,614 (3.0%) 2,290 (3.8%)

14 group 661 (2.2%) 4,338 647 3,074 (3.5%) 1,661 (2.7%)

15 place 416 (1.4%) 2,587 402 2,073 (2.4%) 1,755 (2.9%)

16 motive 15 (0.0%) 87 9 22 (0.0%) 28 (0.0%)

17 object 437 (1.5%) 2,733 412 1,645 (1.9%) 839 (1.4%)

18 person 3,279 (11.2%) 19,273 2,304 13,901 (16.0%) 5,563 (9.1%)

19 phenomenon 147 (0.5%) 784 114 425 (0.4%) 452 (0.7%)

20 plant 581 (2.0%) 4,965 700 4,234 (4.9%) 7,971 (13.2%)

21 possession 287 (1.0%) 1,712 278 1,033 (1.2%) 829 (1.4%)

22 process 211 (0.7%) 987 177 6948 (8.0%) 445 (0.7%)

23 quantity 344 (1.2%) 2,179 317 1,502 (1.7%) 1,050 (1.7%)

24 relation 102 (0.3%) 600 76 288 (0.3%) 343 (0.6%)

25 shape 165 (0.6%) 1,040 172 677 (0.8%) 284 (0.4%)

26 state 805 (2.7%) 4,469 712 1,973 (2.3%) 1,870 (3.0%)

27 substance 642 (2.2%) 5,002 734 3,518 (4.0%) 2,068 (3.4%)

28 time 344 (1.2%) 2,172 321 1,544 (1.8%) 799 (1.3%)

Total 32,208 181,669 23,418 82,759 60,557

Table 2, comparison of the two labelling process  (and salient words per context) with to respect WN1.5 semantic tags.

We add together their weights, over all words
in the definition, and determine the category for
which the sum is greatest, using formula (3).

(3) W(SC) = AR(w,SC)
w∈definition

∑

Thus, we obtained a second semantically
labelled version of DGILE (see table 2, column d).
This version has 86,759 labelled definitions
(covering more than 93% of all noun definitions)
with an accuracy rate of 80% (we have gained,
since the previous labelled version, 62% coverage
and 16% accuracy).

The main differences appear (apart from the
classes ANIMAL and PLANT) in the classes ACT
and PROCESS. This is because during the first
automatic labelling many dictionary definitions
with genus acción (act or action) or efecto (effect)
were classified erroneously as ACT or PROCESS.

These results are difficult to compare with
those of [Yarowsky 92]. We are using a smaller
context window (the noun dictionary definitions
have 9.68 words on average) and a microcorpus
(181,669 words). By training salient words from a
labelled dictionary (only 64% correct) rather than
a raw corpus we expected to obtain less noise.

Although we used the 24 lexicographer’s files
of WordNet as semantic primitives, a more fine-
grained classification could be made. For example,
all FOOD synsets are classified under <food,
nutrient> synset in file 13. However, FOOD
concepts are themselves classified into 11
subclasses (i.e., <yolk>,  <gastronomy>,
<comestible, edible, eatable, ...>, etc.). Thus, if
the LKB we are planning to build needs to
represent <beverage, drink, potable> separately
from the concepts <comestible, edible, eatable,
...> a finer set of semantic primitives should be
chosen, for instance, considering each direct
hyponym of a synset belonging to a semantic file
also as a new semantic primitive or even selecting



for each semantic file the level of abstraction we
need.

A further experiment could be to iterate the
process by collecting from the second labelled
dictionary (a bigger corpus) a new set of salient
words and reestimating again the semantic tags
for all dictionary senses (a similar approach is
used in Riloff & Shepherd 97).

4 Selecting the main top beginners for a
semantic primitive

This section is devoted to the location of the
main top dictionary sense taxonomies for a given
semantic primitive in order to correctly attach all
these taxonomies to the correct semantic primitive
in the LKB.

In order to illustrate this process we will locate
the main top beginners for the FOOD dictionary
senses. However, we must consider that many of
these top beginners are structured. That is, some of
them belong to taxonomies derived from other
ones, and then cannot be directly placed within
the FOOD type. This is the case of vino (wine),
which is a zumo (juice). Both are top beginners for
FOOD and one is a hyponym of the other.

First, we collect all genus terms from the whole
set of DGILE dictionary senses labelled in the
previous section with the FOOD tag (2,614
senses), producing a lexicon of 958 different genus
terms (only 309, 32%, appear more than once in the
FOOD subset of dictionary senses7).

As the automatic dictionary sense labelling is
not free of errors (around 80% accuracy)8 we can
discard some senses by using filtering criteria.

• Filter 1 (F1) removes all FOOD genus terms
not assigned to the FOOD semantic file during the
mapping process between the bilingual dictionary
and WordNet.

• Filter 2 (F2) selects only those genus terms
which appear more times as genus terms in the
FOOD category. That is, those genus terms which
appear more frequently in dictionary definitions
belonging to other semantic tags are discarded.

• Filter 3 (F3) discards those genus terms
which appear with a low frequency as genus terms
in the FOOD semantic category. That is,
infrequent genus terms (given a certain threshold)
are removed. Thus, F3>1 means that the filtering
criteria have discarded those genus terms

7We select this group of genus for the test set.
8Most of them are not really errors. For instance, all
fishes must be ANIMALs, but some of them are edible
(that is, FOODs). Nevertheless, all fishes labelled as
FOOD have been considered mistakes.

appearing in the FOOD subset of dictionary
definitions less than twice.

Table 4 shows the first 10 top beginners for
FOOD. Bold face is used for those genus terms
removed by filter 2. Thus, pez  -fish- is an
ANIMAL.

90 bebida (drink) 48 pasta (pasta, etc.)

86 vino (wine) 40 pan (bread)

78 pez (fish) 39 plato (dish)

56 comida (food) 33 guisado (casserole)

55 carne (meat) 32 salsa (souce)

Table 4, frequency of main top beginners for FOOD.

Table 5 shows the performance of the second
labelling with respect to filter 3 (genus frequency)
varying the threshold. From left to right, filter,
number of genus terms selected (#GT), accuracy
(A), number of definitions (#D) and their
respective accuracy.

LABEL2 + F3 #GT A #D A

F3>9 32 89% 908 88%

F3>8 37 90% 953 88%

F3>7 39 88% 969 87%

F3>6 45 88% 1,011 87%

F3>5 51 87% 1,047 82%

F3>4 62 85% 1,102 86%

F3>3 73 78% 1,146 84%

F3>2 99 69% 1,224 80%

F3>1 151 62% 1,328 77%

Table 5. performance of filter 3.

LABEL2 + F1 #GT A #D A

F1+F3>9 31 94% 895 90%

F1+F3>8 35 95% 931 90%

F1+F3>7 37 91% 947 89%

F1+F3>6 43 92% 989 90%

F1+F3>5 49 92% 1,025 90%

F1+F3>4 55 91% 1,055 90%

F1+F3>3 64 85% 1,091 88%

F1+F3>2 85 82% 1,152 87%

F1+F3>1 125 78% 1,234 86%

Table 6, performance of filter 1 variying filter 3.

Tables 6 and 7 show that at the same level of
genus frequency, filter 2 (removing genus terms
which are more frequent in other semantic
categories) is more accurate that filter 1
(removing all genus terms the translation of
which cannot be FOOD). For instance, no error
appears when selecting those genus terms which



appear 10 or more times (F3) and are more frequent
in that category than in any other (F2).

Table 8 shows the coverage of correct genus
terms selected by criteria F1 and F2 to respect
criteria F3. Thus, for genus terms appearing 10 or
more times, by using either of the two criteria we
are collecting 97% of the correct ones. That is, in
both cases the criteria discards less than 3% of
correct genus terms.

LABEL2 + F2 #GT A #D A

F2+F3>9 31 100% 893 100%

F2+F3>8 35 100% 929 100%

F2+F3>7 37 95% 945 98%

F2+F3>6 41 94% 973 98%

F2+F3>5 47 92% 1,009 97%

F2+F3>4 56 91% 1,054 96%

F2+F3>3 65 87% 1,090 95%

F2+F3>2 82 83% 1,141 93%

F2+F3>1 123 82% 1,223 92%

Table 7, performance of  filter 2 varying filter 3.

Coverage vs F1 Coverage vs F2

F3>9 97% 97%

F3>8 95% 95%

F3>7 95% 95%

F3>6 96% 91%

F3>5 96% 92%

F3>4 89% 90%

F3>3 90% 89%

F3>2 86% 83%

F3>1 83% 81%

Table 8, coverage of second labelling with respect to filter
1 and 2 varying filter 3.

5 Building automatically large scale
taxonomies from DGILE

The automatic Genus Sense Disambiguation
task in DGILE has been performed following
(Rigau et al. 97). This method reports 83%
accuracy when selecting the correct hypernym by
combining eight different heuristics using several
methods and types of knowledge. Using this
combined technique the selection of the correct
hypernym from DGILE had better performance
than those reported by (Bruce et al. 92) using
LDOCE.

Once the main top beginners (relevant genus
terms) of a semantic category are selected and
every dictionary definition has been
disambiguated, we collect all those pairs labelled
with the semantic category we are working on

having one of the genus terms selected. Using
these pairs we finally build up the complete
taxonomy for a given semantic primitive. That is,
in order to build the complete taxonomy for a
semantic primitive we fit the lower senses using
the second labelled lexicon and the genus selected
from this labelled lexicon.

Table 9 summarizes the sizes of the FOOD
taxonomies acquired from DGILE with respect to
filtering criteria and the results manually
obtained by (Castellón 93)9 where 1) is (Castellón
93), (2) F2 + F3 > 9 and (3) F2 + F3 > 4.

FOOD (1) (2) (3)

Genus terms 62 33 68

Dictionary senses 392 952 1,242

Levels 6 5 6

Senses in level 1 2 18 48

Senses in level 2 67 490 604

Senses in level 3 88 379 452

Senses in level 4 67 44 65

Senses in level 5 87 21 60

Senses in level 6 6 0 13

Table 9, comparison of FOOD taxonomies.

Using the first set of criteria (F2+F3>9), we
acquire a FOOD taxonomy with 952 senses (more
than two times larger than if it is done manually).
Using the second one (F2+F3>4), we obtain
another taxonomy with 1,242 (more than three
times larger). While using the first set of criteria,
the 33 genus terms selected produce a taxonomic
structure with only 18 top beginners, the second
set, with 68 possible genus terms, produces another
taxonomy with 48 top beginners. However, both
final taxonomic structures produce more flat
taxonomies than if the task is done manually.
This is because we are restricting the inner
taxonomic genus terms to those selected by the
criteria (33 and 68 respectively). Consider the
following taxonomic chain, obtained in a
semiautomatic way by (Castellón 93):

bebida_1_3 <- líquido_1_6 <- zumo_1_1 <-
vino_1_1 <- rueda_1_1

As l íquido  -liquid- was not selected as a
possible genus (by the criteria described above),
the taxonomic chain for that sense is:

zumo_1_1 <- vino_1_1 <- rueda_1_1

9We used the results reported by (Castellón 93) as a
baseline because her work was done using the same
Spanish dictionary.



Thus, a few arrangements (18 or 48 depending
on the criteria selected) must be done at the top
level of the automatic taxonomies. Studying the
main top beginners we can easily discover an
internal structure between them. For instance,
placing all zumo (juice) senses within bebida
(drink) .

Performing the same process for the whole
dictionary we obtained for F2+F3>9 a taxonomic
structure of 35,099 definitions and for F2+F3>4 the
size grows to 40,754.

6 Conclusions

We proposed a novel methodology which
combines several structured lexical knowledge
resources for acquiring the most important genus
terms of a monolingual dictionary for a given
semantic primitive. Our approach for building
LKBs is mainly descriptive (the main source of
knowledge is MRDs), but a minimal prescribed
structure is provided (the semantic primitives of
the LKB). Using the most relevant genus terms for
a particular semantic primitive and applying a
filtering process, we presented a method to
construct fully automatically taxonomies from any
conventional dictionary. This approach differs
from previous ones because we are considering
senses as lexical units of the LKB (e.g., in contrast
to Richardson 97 who links words) and the mixed
methodology applied (e.g, the complete
descriptive approach of Bruce et al. 92).

The results show that the construction of
taxonomies using lexical resources is not limited to
highly structured MRDs. Applying appropriate
techniques, conventional dictionaries such as
DGILE could be useful resources for building
automatically substantial pieces of an LKB .
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