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Abstract. In this paper Schapire and Singer’s AdaBoost.MH boosting
algorithm is applied to the Word Sense Disambiguation (WSD) problem.
Initial experiments on a set of 15 selected polysemous words show that
the boosting approach surpasses Naive Bayes and Exemplar–based ap-
proaches, which represent state–of–the–art accuracy on supervised WSD.
In order to make boosting practical for a real learning domain of thou-
sands of words, several ways of accelerating the algorithm by reducing the
feature space are studied. The best variant, which we call LazyBoosting,
is tested on the largest sense–tagged corpus available containing 192,800
examples of the 191 most frequent and ambiguous English words. Again,
boosting compares favourably to the other benchmark algorithms.

1 Introduction

Word Sense Disambiguation (WSD) is the problem of assigning the appro-
priate meaning (sense) to a given word in a text or discourse. This meaning is dis-
tinguishable from other senses potentially attributable to that word. Resolving
the ambiguity of words is a central problem for language understanding applica-
tions and their associated tasks [11], including, for instance, machine translation,
information retrieval and hypertext navigation, parsing, spelling correction, ref-
erence resolution, automatic text summarization, etc.

WSD is one of the most important open problems in the Natural Language
Processing (NLP) field. Despite the wide range of approaches investigated and
the large effort devoted to tackling this problem, it is a fact that to date no large–
scale, broad coverage and highly accurate word sense disambiguation system has
been built.

The most successful current line of research is the corpus–based approach
in which statistical or Machine Learning (ML) algorithms have been applied to
learn statistical models or classifiers from corpora in order to perform WSD. Gen-
erally, supervised approaches (those that learn from a previously semantically
annotated corpus) have obtained better results than unsupervised methods on
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small sets of selected highly ambiguous words, or artificial pseudo–words. Many
standard ML algorithms for supervised learning have been applied, such as: Naive
Bayes [19,22], [19,10], Exemplar–based learning Decision Lists [28], Neural Net-
works [27], etc. Further, Mooney [17] has also compared all previously cited
methods on a very restricted domain and including Decision Trees and Rule
Induction algorithms. Unfortunately, there have been very few direct compar-
isons of alternative methods on identical test data. However, it is commonly
accepted that Naive Bayes, Neural Networks and Exemplar–based learning rep-
resent state–of–the–art accuracy on supervised WSD.

Supervised methods suffer from the lack of widely available semantically
tagged corpora, from which to construct really broad coverage systems. This
is known as the “knowledge acquisition bottleneck”. Ng [20] estimates that the
manual annotation effort necessary to build a broad coverage semantically an-
notated corpus would be about 16 man-years. This extremely high overhead
for supervision and, additionally, the also serious overhead for learning/testing
many of the commonly used algorithms when scaling to real size WSD problems,
explain why supervised methods have been seriously questioned.

Due to this fact, recent works have focused on reducing the acquisition cost
as well as the need for supervision in corpus–based methods for WSD. Conse-
quently, the following three lines of research can be found: 1) The design of
efficient example sampling methods [6,10]; 2) The use of lexical resources, such
as WordNet [16], and WWW search engines to automatically obtain from Inter-
net arbitrarily large samples of word senses [12,15]; 3) The use of unsupervised
EM–like algorithms for estimating the statistical model parameters [22]. It is
also our belief that this body of work, and in particular the second line, provides
enough evidence towards the “opening” of the acquisition bottleneck in the near
future. For that reason, it is worth further investigating the application of new
supervised ML methods to better resolve the WSD problem.

Boosting Algorithms. The main idea of boosting algorithms is to combine
many simple and moderately accurate hypotheses (called weak classifiers) into
a single, highly accurate classifier for the task at hand. The weak classifiers are
trained sequentially and, conceptually, each of them is trained on the examples
which were most difficult to classify by the preceding weak classifiers.

The AdaBoost.MH algorithm applied in this paper [25] is a generalization
of Freund and Schapire’s AdaBoost algorithm [9], which has been (theoretically
and experimentally) studied extensively and which has been shown to perform
well on standard machine–learning tasks using also standard machine–learning
algorithms as weak learners [23,8,5,2].

Regarding Natural Language (NL) problems, AdaBoost.MH has been suc-
cessfully applied to Part–of–Speech (PoS) tagging [1], Prepositional–Phrase–
attachment disambiguation [1], and, Text Categorization [26] with especially
good results.

The Text Categorization domain shares several properties with the usual
settings of WSD, such as: very high dimensionality (typical features consist in
testing the presence/absence of concrete words), presence of many irrelevant and



highly dependent features, and the fact that both, the learned concepts and the
examples, reside very sparsely in the feature space. Therefore, the application
of AdaBoost.MH to WSD seems to be a promising choice. It has to be noted
that, apart from the excellent results obtained on NL problems, AdaBoost.MH
has the advantages of being theoretically well founded and easy to implement.

The paper is organized as follows: Section 2 is devoted to explain in detail
the AdaBoost.MH algorithm. Section 3 describes the domain of application and
the initial experiments performed on a reduced set of words. In Section 4 several
alternatives are explored for accelerating the learning process by reducing the
feature space. The best alternative is fully tested in Section 5. Finally, Section 6
concludes and outlines some directions for future work.

2 The Boosting Algorithm AdaBoost.MH

This section describes the Schapire and Singer’s AdaBoost.MH algorithm for
multiclass multi–label classification, using exactly the same notation given by
the authors in [25,26].

As already said, the purpose of boosting is to find a highly accurate classifi-
cation rule by combining many weak hypotheses (or weak rules), each of which
may be only moderately accurate. It is assumed that there exists a separate pro-
cedure called the WeakLearner for acquiring the weak hypotheses. The boosting
algorithm finds a set of weak hypotheses by calling the weak learner repeatedly
in a series of T rounds. These weak hypotheses are then combined into a single
rule called the combined hypothesis.

Let S = {(x1, Y1), . . . , (xm, Ym)} be the set of m training examples, where
each instance xi belongs to an instance space X and each Yi is a subset of a
finite set of labels or classes Y. The size of Y is denoted by k = |Y|.

The pseudo–code of AdaBoost.MH is presented in figure 1. AdaBoost.MH
maintains an m×k matrix of weights as a distribution D over examples and
labels. The goal of the WeakLearner algorithm is to find a weak hypothesis with
moderately low error with respect to these weights. Initially, the distribution D1

is uniform, but the boosting algorithm updates the weights on each round to
force the weak learner to concentrate on the pairs (examples,label) which are
hardest to predict.

More precisely, let Dt be the distribution at round t, and ht : X × Y → R

the weak rule acquired according to Dt. The sign of ht(x, l) is interpreted as
a prediction of whether label l should be assigned to example x or not. The
magnitude of the prediction |ht(x, l)| is interpreted as a measure of confidence in
the prediction. In order to understand correctly the updating formula this last
piece of notation should be defined. Thus, given Y ⊆ Y and l∈Y, let Y [l] be +1
if l∈Y and -1 otherwise.

Now, it becomes clear that the updating function increases (or decreases)
the weights Dt(i, l) for which ht makes a good (or bad) prediction, and that this
variation is proportional to |ht(x, l)|.



procedure AdaBoost.MH (in: S = {(xi, Yi)}
m

i=1)

### S is the set of training examples
### Initialize distribution D1 (for all i, 1 ≤ i ≤ m, and all l, 1 ≤ l ≤ k)

D1(i, l) = 1/(mk)

for t:=1 to T do

### Get the weak hypothesis ht : X × Y → R

ht = WeakLearner (X, Dt);

### Update distribution Dt (for all i, 1 ≤ i ≤ m, and all l, 1 ≤ l ≤ k)

Dt+1(i, l)=
Dt(i, l)exp(−Yi[l]ht(xi, l))

Zt

### Zt is a normalization factor (chosen so that Dt+1 will be a distribution)

end-for

return the combined hypothesis: f(x, l) =
T

∑

t=1

ht(x, l)

end AdaBoost.MH

Fig. 1. The AdaBoost.MH algorithm

Note that WSD is not a multi–label classification problem since a unique sense
is expected for each word in context. In our implementation, the algorithm runs
exactly in the same way as explained above, except that sets Yi are reduced to
a unique label, and that the combined hypothesis is forced to output a unique
label, which is the one that maximizes f(x, l).

Up to now, it only remains to be defined the form of the WeakLearner.
Schapire and Singer [25] prove that the Hamming loss of the AdaBoost.MH

algorithm on the training set1 is at most
∏T

t=1
Zt, where Zt is the normalization

factor computed on round t. This upper bound is used in guiding the design of
the WeakLearner algorithm, which attempts to find a weak hypothesis ht that
minimizes: Zt =

∑m

i=1

∑

l∈Y Dt(i, l)exp(−Yi[l]ht(x, l)) .

2.1 Weak Hypotheses for WSD

As in [1], very simple weak hypotheses are used to test the value of a boolean
predicate and make a prediction based on that value. The predicates used, which
are described in section 3.1, are of the form “f = v”, where f is a feature and v is
a value (e.g.: “previous word = hospital”). Formally, based on a given predicate
p, our interest lies on weak hypotheses h which make predictions of the form:

h(x, l) =

{

c0l if p holds in x

c1l otherwise

where the cjl’s are real numbers.

1 i.e. the fraction of training examples i and labels l for which the sign of f(xi, l) differs
from Yi[l].



For a given predicate p, and bearing the minimization of Zt in mind, values cjl

should be calculated as follows. Let X1 be the subset of examples for which the
predicate p holds and let X0 be the subset of examples for which the predicate
p does not hold. Let [[π]], for any predicate π, be 1 if π holds and 0 otherwise.
Given the current distribution Dt, the following real numbers are calculated for
each possible label l, for j∈{0, 1}, and for b∈{+1,−1}:

W
jl
b =

∑m

i=1
Dt(i, l)[[xi ∈ Xj ∧ Yi[l] = b]]

That is, W
jl
+1 (W jl

−1) is the weight (with respect to distribution Dt) of the
training examples in partition Xj which are (or not) labelled by l.

As it is shown in [25], Zt is minimized for a particular predicate by choosing:

cjl = 1

2
ln(

W
jl

+1

W
jl

−1

)

These settings imply that:

Zt = 2
∑

j∈{0,1}

∑

l∈Y

√

W
jl
+1W

jl
−1

Thus, the predicate p chosen is that for which the value of Zt is smallest.
Very small or zero values for the parameters W

jl
b cause cjl predictions to

be large or infinite in magnitude. In practice, such large predictions may cause
numerical problems to the algorithm, and seem to increase the tendency to
overfit. As suggested in [26], smoothed values for cjl have been used.

3 Applying Boosting to WSD

3.1 Corpus

In our experiments the boosting approach has been evaluated using the DSO

corpus containing 192,800 semantically annotated occurrences2 of 121 nouns and
70 verbs. These correspond to the most frequent and ambiguous English words.
The DSO corpus was collected by Ng and colleagues [18] and it is available from
the Linguistic Data Consortium (LDC)3.

For our first experiments, a group of 15 words (10 nouns and 5 verbs) which
frequently appear in the related WSD literature has been selected. These words
are described in the left hand–side of table 1. Since our goal is to acquire a
classifier for each word, each row represents a classification problem. The number
of classes (senses) ranges from 4 to 30, the number of training examples from 373
to 1,500 and the number of attributes from 1,420 to 5,181. The MFS column on
the right hand–side of table 1 shows the percentage of the most frequent sense
for each word, i.e. the accuracy that a naive “Most–Frequent–Sense” classifier
would obtain.

2 These examples are tagged with a set of labels which correspond, with some minor
changes, to the senses of WordNet 1.5 [21].

3 LDC e-mail address: ldc@unagi.cis.upenn.edu



The binary–valued attributes used for describing the examples correspond to
the binarization of seven features referring to a very narrow linguistic context.
Let “w−2 w−1 w w+1 w+2” be the context of 5 consecutive words around the
word w to be disambiguated. The seven features mentioned above are exactly
those used in [19]: w−2, w−1, w+1, w+2, (w−2, w−1), (w−1, w+1), and (w+1, w+2),
where the last three correspond to collocations of two consecutive words.

3.2 Benchmark Algorithms and Experimental Methodology

AdaBoost.MH has been compared to the following algorithms:

Naive Bayes (NB). The naive Bayesian classifier has been used in its most
classical setting [4]. To avoid the effect of zero counts when estimating the con-
ditional probabilities of the model, a very simple smoothing technique has been
used, which was proposed in [19].

Exemplar–based learning (EBk). In our implementation, all examples are
stored in memory and the classification of a new example is based on a k–
NN algorithm using Hamming distance to measure closeness (in doing so, all
examples are examined). If k is greater than 1, the resulting sense is the weighted
majority sense of the k nearest neighbours (each example votes its sense with a
strength proportional to its closeness to the test example). Ties are resolved in
favour of the most frequent sense among all those tied.

The comparison of algorithms has been performed in series of controlled
experiments using exactly the same training and test sets for each method.
The experimental methodology consisted in a 10-fold cross-validation. All ac-
curacy/error rate figures appearing in the paper are averaged over the results
of the 10 folds. The statistical tests of significance have been performed us-
ing a 10-fold cross validation paired Student’s t-test with a confidence value of:
t9,0.975 = 2.262.

3.3 Results

Figure 2 shows the error rate curve of AdaBoost.MH, averaged over the 15
reference words, and for an increasing number of weak rules per word. This plot
shows that the error obtained by AdaBoost.MH is lower than those obtained by
NB and EB15 (k=15 is the best choice for that parameter from a number of tests
between k=1 and k=30) for a number of rules above 100. It also shows that the
error rate decreases slightly and monotonically, as it approaches the maximum
number of rules reported4.

According to the plot in figure 2, no overfitting is observed while increasing
the number of rules per word. Although it seems that the best strategy could
be “learn as many rules as possible”, in [7] it is shown that the number of
rounds must be determined individually for each word since they have different

4 The maximum number of rounds considered is 750, merely for efficiency reasons.
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Fig. 2. Error rate of AdaBoost.MH related to the number of weak rules

behaviours. The adjustment of the number of rounds can be done by cross–
validation on the training set, as suggested in [1]. However, in our case, this cross–
validation inside the cross–validation of the general experiment would generate
a prohibitive overhead. Instead, a very simple stopping criterion (sc) has been
used, which consists in stopping the acquisition of weak rules whenever the error
rate on the training set falls below 5%, with an upper bound of 750 rules. This
variant, which is referred to as ABsc, obtained comparable results to AB750 but
generating only 370.2 weak rules per word on average, which represents a very
moderate storage requirement for the combined classifiers.

The numerical information corresponding to this experiment is included in
table 1. This table shows the accuracy results, detailed for each word, of NB,
EB1, EB15, AB750, and ABsc. The best result for each word is printed in boldface.

As it can be seen, in 14 out of 15 cases, the best results correspond to the
boosting algorithms. When comparing global results, accuracies of either AB750

or ABsc are significantly greater than those of any of the other methods. Finally,
note that accuracies corresponding to NB and EB15 are comparable (as suggested
in [19]), and that the use of k’s greater than 1 is crucial for making Exemplar–
based learning competitive on WSD.

4 Making Boosting Practical for WSD

Up to now, it has been seen that AdaBoost.MH is a simple and competitive al-
gorithm for the WSD task. It achieves an accuracy performance superior to that
of the Naive Bayes and Exemplar–based algorithms tested in this paper. How-
ever, AdaBoost.MH has the drawback of its computational cost, which makes
the algorithm not scale properly to real WSD domains of thousands of words.

The space and time–per–round requirements of AdaBoost.MH are O(mk)
(recall that m is the number of training examples and k the number of senses),
not including the call to the weak learner. This cost is unavoidable since Ad-
aBoost.MH is inherently sequential. That is, in order to learn the (t+1)-th weak



Number of Accuracy (%)
Word POS Senses Examp. Attrib. MFS NB EB1 EB15 AB750 ABsc

age n 4 493 1662 62.1 73.8 71.4 71.0 74.7 74.0
art n 5 405 1557 46.7 54.8 44.2 58.3 57.5 62.2

car n 5 1381 4700 95.1 95.4 91.3 95.8 96.8 96.5
child n 4 1068 3695 80.9 86.8 82.3 89.5 92.8 92.2
church n 4 373 1420 61.1 62.7 61.9 63.0 66.2 64.9
cost n 3 1500 4591 87.3 86.7 81.1 87.7 87.1 87.8

fall v 19 1500 5063 70.1 76.5 73.3 79.0 81.1 80.6
head n 14 870 2502 36.9 76.9 70.0 76.9 79.0 79.0

interest n 7 1500 4521 45.1 64.5 58.3 63.3 65.4 65.1
know v 8 1500 3965 34.9 47.3 42.2 46.7 48.7 48.7

line n 26 1342 4387 21.9 51.9 46.1 49.7 54.8 54.5
set v 19 1311 4396 36.9 55.8 43.9 54.8 55.8 55.8

speak v 5 517 1873 69.1 74.3 64.6 73.7 72.2 73.3
take v 30 1500 5181 35.6 44.8 39.3 46.1 46.7 46.1
work n 7 1469 4923 31.7 51.9 42.5 47.2 50.7 50.7

Avg. nouns 8.6 1040.1 3978.5 57.4 71.7 65.8 71.1 73.5 73.4
verbs 17.9 1265.6 4431.9 46.6 57.6 51.1 58.1 59.3 59.1

all 12.1 1115.3 4150.0 53.3 66.4 60.2 66.2 68.1 68.0

Table 1. Set of 15 reference words and results of the main algorithms

rule it needs the calculation of the t-th weak rule, which properly updates the
matrix Dt. Further, inside the WeakLearner, there is another iterative process
that examines, one by one, all attributes so as to decide which is the one that
minimizes Zt. Since there are thousands of attributes, this is also a time consum-
ing part, which can be straightforwardly spedup either by reducing the number
of attributes or by relaxing the need to examine all attributes at each iteration.

4.1 Accelerating the WeakLearner

Four methods have been tested in order to reduce the cost of searching for weak
rules. The first three, consisting in aggressively reducing the feature space, are
frequently applied in Text Categorization. The fourth consists in reducing the
number of attributes that are examined at each round of the boosting algorithm.

Frequency filtering (Freq): This method consists in simply discarding those
features corresponding to events that occur less than N times in the training
corpus. The idea beyond that criterion is that frequent events are more infor-
mative than rare ones.

Local frequency filtering (LFreq): This method works similarly to Freq but
considers the frequency of events locally, at the sense level. More particularly, it
selects the N most frequent features of each sense.

RLM ranking: This third method consists in making a ranking of all attributes
according to the RLM distance measure [13] and selecting the N most relevant



features. This measure has been commonly used for attribute selection in deci-
sion tree induction algorithms5.

LazyBoosting: The last method does not filter out any attribute but reduces
the number of those that are examined at each iteration of the boosting algo-
rithm. More specifically, a small proportion p of attributes are randomly selected
and the best weak rule is selected among them. The idea behind this method is
that if the proportion p is not too small, probably a sufficiently good rule can
be found at each iteration. Besides, the chance for a good rule to appear in the
whole learning process is very high. Another important characteristic is that no
attribute needs to be discarded and so we avoid the risk of eliminating relevant
attributes6.

The four methods above have been compared for the set of 15 reference words.
Figure 3 contains the average error–rate curves obtained by the four variants at
increasing levels of attribute reduction. The top horizontal line corresponds to
the MFS error rate, while the bottom horizontal line stands for the error rate of
AdaBoost.MH working with all attributes. The results contained in figure 3 are
calculated running the boosting algorithm 250 rounds for each word.
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Fig. 3. Error rate obtained by the four methods, at 250 weak rules per word,
with respect to the percentage of rejected attributes

The main conclusions that can be drawn are the following:

5 RLM distance belongs to the distance–based and information–based families of at-
tribute selection functions. It has been selected because it showed better performance
than seven other alternatives in an experiment of decision tree induction for PoS tag-
ging [14].

6 This method will be called LazyBoosting in reference to the work by Samuel and col-
leagues [24]. They applied the same technique for accelerating the learning algorithm
in a Dialogue Act tagging system.



• All methods seem to work quite well since no important degradation is ob-
served in performance for values lower than 95% in rejected attributes. This
may indicate that there are many irrelevant or highly dependent attributes
in our domain.

• LFreq is slightly better than Freq, indicating a preference to make frequency
counts for each sense rather than globally.

• The more informed RLM ranking performs better than frequency–based re-
duction methods Freq and LFreq.

• LazyBoosting is better than all other methods, confirming our expectations:
it is worth keeping all information provided by the features. In this case, ac-
ceptable performance is obtained even if only 1% of the attributes is explored
when looking for a weak rule. The value of 10%, for which LazyBoosting

still achieves the same performance and runs about 7 times faster than Ad-
aBoost.MH working with all attributes, will be selected for the experiments
in section 5.

5 Evaluating LazyBoosting

The LazyBoosting algorithm has been tested on the full semantically annotated
corpus with p = 10% and the same stopping criterion described in section 3.3,
which will be referred to as ABl10sc. The average number of senses is 7.2 for
nouns, 12.6 for verbs, and 9.2 overall. The average number of training examples
is 933.9 for nouns, 938.7 for verbs, and 935.6 overall.

The ABl10sc algorithm learned an average of 381.1 rules per word, and took
about 4 days of cpu time to complete7. It has to be noted that this time includes
the cross–validation overhead. Eliminating it, it is estimated that 4 cpu days
would be the necessary time for acquiring a word sense disambiguation boosting–
based system covering about 2,000 words.

The ABl10sc has been compared again to the benchmark algorithms using
the 10-fold cross–validation methodology described in section 3.2. The average
accuracy results are reported in the left hand–side of table 2. The best figures
correspond to the LazyBoosting algorithm ABl10sc, and again, the differences are
statistically significant using the 10-fold cross–validation paired t-test.

Accuracy (%) Wins–Ties–Losses
MFS NB EB15 ABl10sc ABl10sc vs. NB ABl10sc vs. EB15

Nouns (121) 56.4 68.7 68.0 70.8 99(51) – 1 – 21(3) 100(68) – 5 – 16(1)
Verbs (70) 46.7 64.8 64.9 67.5 63(35) – 1 – 6(2) 64(39) – 2 – 4(0)

Average (191) 52.3 67.1 66.7 69.5 162(86) – 2 – 27(5) 164(107) – 7 – 20(1)

Table 2. Results of LazyBoosting and the benchmark methods on the 191–word
corpus

7 The current implementation is written in PERL-5.003 and it was run on a SUN
UltraSparc2 machine with 194Mb of RAM.



The right hand–side of the table shows the comparison of ABl10sc versus
NB and EB15 algorithms, respectively. Each cell contains the number of wins,
ties, and losses of competing algorithms. The counts of statistically significant
differences are included in brackets. It is important to point out that EB15 only
beats significantly ABl10sc in one case while NB does so in five cases. Conversely,
a significant superiority of ABl10sc over EB15 and NB is observed in 107 and 86
cases, respectively.

6 Conclusions and Future Work

In the present work, Schapire and Singer’s AdaBoost.MH algorithm has been
evaluated on the word sense disambiguation task, which is one of the hardest
open problems in Natural Language Processing. As it has been shown, the boost-
ing approach outperforms Naive Bayes and Exemplar–based learning, which rep-
resent state–of–the–art accuracy on supervised WSD. In addition, a faster variant
has been suggested and tested, which is called LazyBoosting. This variant allows
the scaling of the algorithm to broad-coverage real WSD domains, and is as ac-
curate as AdaBoost.MH. Further details can be found in an extended version of
this paper [7].

Future work is planned to be done in the following directions:

• Extensively evaluate AdaBoost.MH on the WSD task. This would include
taking into account additional attributes, and testing the algorithms in other
manually annotated corpora, and especially on sense–tagged corpora auto-
matically obtained from Internet.

• Confirm the validity of the LazyBoosting approach on other language learning
tasks in which AdaBoost.MH works well, e.g.: Text Categorization.

• It is known that mislabelled examples resulting from annotation errors tend
to be hard examples to classify correctly, and, therefore, tend to have large
weights in the final distribution. This observation allows both to identify the
noisy examples and use boosting as a way to improve data quality [26,1].
It is suspected that the corpus used in the current work is very noisy, so it
could be worth using boosting to try and improve it.
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