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Abstract

This paper presents an extension to perform
Word Sense Disambiguation of an integrated ar-
chitecture designed for Semantic Parsing. In the
proposed collaborative framework, both tasks
are addressed simultaneously. The feasibility
and robustness of the proposed architecture for
Semantic Parsing have been tested against a
well-defined task on Word Sense Disambigua-
tion (the SENSEVAL-II English Lexical Sam-
ple) using automatically acquired models from
SemCor.

1 Introduction

This paper explores the use of new robust and
flexible architectures towards Natural Language
Understanding (NLU). The work here presented
focuses in one of the main steps in NLU, Semantic
Interpretation. As a first step, our main goal is
to integrate two of the tasks involved in Semantic
Interpretation: Word Sense Disambiguation and
Semantic Parsing.

Word Sense Disambiguation (WSD hereafter),
can be defined as the process of deciding the
meaning of a word in its context. Our approach
uses the possible senses of a word previously de-
fined in a sense repository. In particular, we use
WordNet (Fellbaum 98), a lexical taxonomy built
at Princeton University that has become de facto
the standard sense repository in the NLP commu-
nity.

The goal of Semantic Parsing is to identify se-
mantic relations between words in text, resulting
in structures denoting various levels of semantic
interpretation. For instance, trying to identify
the semantic roles of the entities, (such as Agent
or Patient) (Brill & Mooney 97). In this case, the
process, named Semantic Role Labeling (SRL),
has been the goal of the shared tasks of the last
editions of SENSEVAL1 and CONLL2.

In this paper we will integrate WSD in an ar-
chitecture already used for Semantic Parsing (At-

1http://www.senseval.org/
2http://www.cnts.ua.ac.be/conll/

serias et al. 01), allowing both tasks to be done
simultaneously. Although, this architecture al-
lows this integration, the lack of wide coverage
resources for SRL which can be related to Word-
Net synsets has forced us to acquire automatically
those models. Although, the models acquired are
based on syntactic dependencies not roles, they
allow to test the flexibility and robustness of our
approach against a well established WSD task.

2 Semantic Parsing & WSD

Despite the fact that WSD and Semantic Pars-
ing are strongly correlated, traditionally, most of
the systems treat both separately. Paradoxically,
WSD can improve Semantic Parsing, as the differ-
ent senses of a word could present different syn-
tactic structures (specially verbs) and the other
way round, Semantic Parsing can help WSD (e.g.
selectional preferences could determine the right
sense of the verb (Carroll & McCarthy 00)). In
this paper we present a robust and flexible archi-
tecture that aims to integrate both in a collabo-
rative way.

Our approach to WSD follows the same formal-
ization for Semantic Parsing that of (Atserias et
al. 01) . This formalization was based on the
application of lexicalized verbal models. Those
models combine syntactic information (preposi-
tion, agreement, etc) and semantic information
(roles, selectional preferences, etc.) as the model
shown in Table 1.

In this system Semantic Parsing was carried
out by means of finding the model/s which are
the most similar/s to the input sentence. Follow-
ing this approach and connecting those models to
WordNet senses, at the same time that we iden-
tify the most similar model, the correct sense of
the word will be also determined. In that way, we
formalize a framework where Semantic Parsing
and WSD are performed simultaneously.

During a pre-processing step, the input sen-
tence containing the word to disambiguate is syn-



model impersonal for “hablar” (to talk)
Synt. Prep. Rol Semantics Agree. Optional.

SE x se Top no no
PP de, sobre entity Top no yes
PP con destination Top no yes

Table 1: Example of LEXPIR Syntatic-Semantic model for Semantic Parsing

detmod ncsubj dobj

2

6

4

c1

lemma the

pos AT

3

7

5

2

6

4

c2

lemma cat

pos NN1

3

7

5

2

6

4

c3

lemma eat

pos VVZ

3

7

5

2

6

4

c4

lemma fish

pos NN2

3

7

5

Figure 1: Syntactic Dependencies for ”The cat eats fish”

tactically parsed and obtaining the syntactic de-
pendencies between their elements using RASP
(Carroll et al. 98). Figure 1 shows the de-
pendency analysis obtained for the sentence The
cat eats fish. Then each word is tagged with
all its possible senses in WordNet. We use an
specific tool for recognizing multi–word expres-
sions (MWEs) according to WordNet (Arranz et
al. 05) instead of the lemmatization/tokenization
provided by RASP.

Once all possible senses in Wordnet are added
for each word, the input is also enriched with all
the information associated to each sense using the
Multilingual Central Repository (Mcr)(Atserias
et al. 04b): the expanded (Atserias et al. 04a)
EuroWordNet’s Top Concept Ontology (Vossen
98), Suggested Upper Merged Ontology (Sumo)
(Niles & Pease 01) and MultiWordNet Domains
(Magnini & Cavaglia 00).

The resulting information (syntactic dependen-
cies and semantic information) for each word is
converted to a feature structure which is the in-
put to our system. The Figure 2 shows the feature
structures obtained for the two different senses of
fish: the food sense (fish#n#1) and the animal
sense (fish#n#2). Henceforth, we will use the
term object to refer to those feature structures.

3 NLP as a CLP

Once the set of objects corresponding to the in-
put sentence is obtained, it can be compared with
the models. However, due to the richness of the
language, robust methods to carry out this com-
parison are needed. Those methods should be ca-
pable to deal with semantic preferences or even
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Figure 2: Object Fish

to relax the syntactic structure. Thus, we formal-
ize the problem of finding the most similar model
for the input sentence as a Constraint Satisfaction
Problem (CSP). CSPs have been already used in
other NLP task: Part of Speech tagging (Padró
98), syntactic analysis (Weighted Constraint De-
pendency Grammars (Foth et al. 03)) or Machine
Translation (Mikrokosmos (Beale 96)).

In most NLP tasks, and specially in WSD,
we need to express fuzziness, possibilities, prefer-
ences, costs, that is, soft constraints, and then the
problem to be solved became over–constrained.
Despite the advances in the area of solving effi-
ciently these kind of CSP with soft constraints
(or preferences) (Rudova 01), to find the best so-
lution still remains an open issue.

A natural way to model Constraint Satisfaction
Problem (CSP) is by means of Consistent Labeling
Problems (CLP)(Messeguer & Larossa 95). Con-
sistent Labeling Problems (CLP) can be solved
efficiently via Relaxation Labeling. Relaxation la-



beling is a generic name for a family of iterative
algorithms which perform function optimization,
based on local information.

4 Consistent Labeling Problems

A Consistent Labeling Problem (CLP) basically
stands for the problem of finding the most con-
sistent assignments of a set of variables, given a
set of constraints. Formally, a Labeling Problem
is defined by a set of variables Vi, a set of labels
(domain) for each variable Di, a compatibility re-
lation over tuples. Compatibilities are real-valued
functions rij : DxD −→ < where ri,j(a, b) refers
to the compatibility of the simultaneous assign-
ment of a to Vi and b to Vj. In a similar way
than CSP aims to find total assignments where
constraints are not violated, CLP looks for label-
ing where variables are highly compatible with
respect to compatibility functions.

The feature structures (objects) that are the
input of the system are represented in the CLP
by means of a set of assignments. That is, each
feature of the object is represented by a variable
whose domain is the set of values of that feature.
The variable c1.att stands for the feature att of
the object c1.

However, as can be seen in figure 2 the input
objects contains complex features related to the
different senses. In the CLP, these objects are
amalgamated. That is, the representation asso-
ciated to the different senses is combined. Fig-
ure 3 shows a simplified CLP representation for
the sentence ”The cat eats fish”. The variables
amalgamate all the values of the same features
for different senses. For instance, the domain fea-
tures related to the fish object (c3) in figure 2
are mapped into the c3.domain variable, and the
possible labels of the variable c3.domain corre-
sponds to the union of the values for the domain
feature.

The main idea of this amalgamation, is that,
in a similar way than Polaroid Words (Hirst 87),
when a model is chosen the representation of the
object is selected and viceversa. The consistence
between the sense selected and the selection of the
corresponding labels in the variable are assured by
a set of constrains.

However, not only the object features have to
be represented in the CLP but also the relations
between those objects. Most of the problems
which are naturally modeled as a CLP do not

Variable Values

c1.pos∗ { NN1 }
c1.lemma∗ { cat }
c1.sense { cat#n#1, cat#n#2 ...}
c1.domain { Zoology, Factotum, Person,

Transport}
c1.model { NONE }
c1.role { subj.m1.c2, subj.m2.c2}

c2.pos∗ { VVZ }
c2.lemma∗ { eat }
c2.sense { eat#v#1, eat#v#2 ...}
c3.domain {Gastronomy, Chemistry, Fac-

totum, Psychology, Zoology}
c2.model { transitive }
c2.role { TOP }

c3.pos∗ { NN1 }
c3.lemma∗ { fish }
c3.sense { fish#n#1, fish#n#2 }
c3.domain { Animal, Food}
c3.model { NONE }
c3.role { dobj.m1.c3}

Figure 3: CLP para The cat eats fish

have and implicit structure. Thus, to represent a
structure between objects we need to use a kind-of
dependency representation.

The combination of objects by means of a
model is represented using two variables, a vari-
able named model which represents the model
which is applied and another variable named role
which represents the dependency between the two
objects. There is one special model, named none,
to represent the null-model (that is the no appli-
cation of any model) and one special role, named
top, to represent the null-role (that is that the
object do not take part in any model).

In order to identify a role from a model label we
need a triplet (role, object, model). For instance,
the role dobj of the m1 model for the object eat
is represented as (dobj, c3, m1).

Since a clp always assigns a label to all the
variables, we will use the two null-labels defined
previously: none for the model variables (objects
which do not have/use a model, usually leaf se-
mantic objects with no sub-constituents) and the
label top for the role variables (objects not play-
ing a role in the model of a higher constituent,
e.g. the sentence head).

4.1 Matching Roles and Objects

In order to see whether a model can be applied
or not, we should determine which combination
of objects could be used to fulfill the roles of
the model. First we will establish which roles
an object can play in isolation, that is regard-



less which objects fulfill the other roles of the
model by means of a similarity measure between
an object and a role: sim(obj, role). Once deter-
mined which pairs of role-object can be instanti-
ated, it must be established which objects can be
used together to best fulfill a model.

Some of the assignments/features which de-
termine how much an object suits a role do
not depend on the sense/model chosen and do
not change in our amalgamated representation
(static). For instance, in our representation the
attributes pos or lemma are shared by all the
senses.

Thus, the function sim could be split in two: a
dynamic part simdyn and a static part simstatic

which can be calculated only once (e.g. when
building the CLP) and can be used to determine
which objects can play a role initially in the CLP.
On the other hand, the dynamic part, which de-
pends on the simdyn could be represented as a set
of constraint which takes into account the current
state of the CLP (that is the weight associated to
the assignment at each iteration). In the experi-
ments carried out, the dynamic attributes are the
sense, domain, Sumo and Top Onto. For sim-
plicity we have chosen a similarity function which
combines independently the similarity of each at-
tribute:

sim(obj, role) =

∑
a∈Atts simatt(role.a, obj.a)

#Atts

Next section describes the set of constraints
which ensures a) that the model are well-formed
(structural) and b) the good application of both,
models and roles (matching). These constraints
have a weight associated standing the compati-
bility (∼) or the incompatibility (�).

4.2 Structural Constraints

• Object Uniqueness: This first axiom
ensures that an object can only fulfill a role:
[cx.role = a] � [cx.role = b]
∀x ∈ Obj ∀a, b ∈ Roles(cx) | a 6= b

• Role Uniqueness: A role can only be
fulfilled by one object: [cx.role = a] �
[cy.role = a]
∀x, y ∈ Obj ∀a ∈ Roles | x 6= y

This constraint will avoid for instance that
the object cat and fish fulfill the same role
simultaneously.

• Model Uniqueness: The models are
incompatible among them:
[cx.model = a] � [cx.model = b]
∀x ∈ Obj ∀a, b ∈Models, x 6= y

• Model Inconsistence: A role can not be
fulfilled by an object if the model to which
the role belongs is not being instantiated:
[cx.model = mb] � [cy.role = (r,ma, x)]
∀x, y ∈ Obj (r, x,ma) ∈ Roles(y)
mb,ma ∈Modelos(x) | ma 6= mb

• TOP Uniqueness Only one TOP:
[cx.model = TOP ] � [cy.model = TOP ]
∀x, y ∈ Obj, x 6= y

• TOP Existence At least a TOP:
[cx.model = TOP ] ∼ @ [cy.model = TOP ]
∀x, y ∈ Obj | x 6= y

• NONE Support The model NONE is
compatible with the inexistence of the role
assignments:
[cy.model = NONE] ∼ @ [cy.role = a]
∀y ∈ Obj

4.2.1 Matching Constraints

• Model Support In order to not penalise
smaller models, the support a model receives
is normalized by the number of its roles.
[cx.model = m] ∼ [cy.role = (r,m, x)]
∀(r,m, x) ∈ Roles

For instance, if the model eat-V4 has three
possible roles (subj, dobj, dobj2), the con-
straint which supports this model depend-
ing on assignment of the role dobj2 will be
[c3model = eat-V4] ∼

1

3 [c3role = (dobj2, eat-
V4, c2)]. The model will have also two simi-
lar constraints for the other two roles.

• Role Support The role support must take
into account the sense which are associated
to the object. Thus we need to compare each
sense and the role:
[crole = (r, m, x)] ∼w [csense = s]
∀c, x ∈ Obj ∀s ∈ c.sense where w is simdyn

between the senses of the object and the role.
For instance, the constraint [c3role =



(dob#2, eat-V4, c2)] ∼2.45 [c3sense =
fish#n#2] will give support to the assign-
ment (dob#2, eat-V, c2) taking into account
the current weight of the assignment repre-
senting the sense fish#v#2 and their similar-
ity in WordNet3 with the sense/s of the role
(dob#2, eat-V4, c2).

4.3 Sense Constraints

The following set of constraints ensures that
at the same time a model is applied, the sense
associated with this model is also selected, for
both the head of the model and the rest of roles.
As the current formalization does not include
any constraint that modifies the domain, Sumo

or Top Onto, these features do not need to be
represented in the CLP and can be considered as
static in the sense that we will not have to keep
their consistence.

• Head Sense Disambiguation This set of
constraints associate the application of a
model with the selection of its sense for the
head of the model:
[csense = s] ∼100 Orn

i=1
[cmodel = mi]

∀s ∈ c.sense and where m1...mn is the set of
models of c whose sense is s

For instance, the constraint [c2sense =
eat#v#3] ∼100 [c2model = eat-V17] or
[c2model = eat-V52] or [c2model = eat-V50]
would give support to the assign of the third
sense of eat if any of the models associated to
the third sense (eat-V17, eat-V52, eat-V50)
is selected.

• Role Sense Disambiguation This set of
constraints associates the sense of the role
with the sense of the object which fulfills the
role:
[csense = r.sense] ∼w [crole = (r, m, x)]
∀c ∈ Obj where w is simstatic(objr.sense, role)
Where objr.sense is the representation of the
object corresponding to sense r.sense, for in-
stance, [c3sense = fish#n#2] ∼2 [c3role =
(dob2, eat-V4, c2)] will select the second
sense of fish if the object c3 fulfills the role
dobj2 of model eat-V4. The simstatic will be

3For the experiments we use the level of the first com-
mon ancestor

calculated comparing the attributes associ-
ated to the object representing the second
sense of fish and the role.

4.4 Initial Labeling

As relaxation labeling is an algorithm with local
convergence, one of the main issues when using
this algorithm is to establish the initial labeling
from where the iterative process starts. Heuristi-
cally we initialize the role and model assignments
according to the static similarity function, while
for the sense assignments the SemCor frequency
is been used.

5 Experiments

To prove the flexibility and robustness of our ap-
proach against WSD we applied our system to En-
glish Lexical Sample of SENSEVAL-II. This tasks
consists onn disambiguating the occurrences of 73
different words (noun, verbs and adjectives) in a
corpus of 4,328 paragraphs. We choose this spe-
cific task because we plan to acquire the models
from the examples of the training corpora and also
because in SENSEVAL-III do not used WordNet
senses for verbs directly.

In order to apply our system to this task,
we need syntactic models which also contain se-
mantic information about WordNet senses. Al-
though there has been remarkable efforts to relate
FrameNet and VerbNet with WordNet (Shi & Mi-
halcea 05), the coverage is still very low to face
even a small Lexical Sample task (only 50 senses
of the test are directly associated to a frame and
only 640 sentences of the 4,328 could be solved
correctly).

Thus, although its inherent complexity, we de-
cide to build automatically these models from
corpus. The acquisition this kind of models has
many difficulties. First, the lack of disambiguated
corpus, or when existing their small size which
makes impossible: a) to have a wide coverage of
the senses in WordNet and b) to have models of
all the syntactic subcategorization patterns for a
sense. Moreover, state-of-the-art WSD systems
and parsers still have a significant error rate that
machine Learning algorithms could not cope with.

5.1 Model Acquisition

In order to obtain models from semantically
tagged corpus we used the same pre–processing
than for the input (see section 2), obtaining for



each sentence a set of syntactic dependencies en-
riched with semantic information from Mcr. For
each sentence, we extract for each word, the fea-
ture structures associated to its direct syntactic
dependences (e.g. subj / obj / dobj). We take
these set of relations as the set roles of a model for
this word. For instance, taking the dependency
analysis of sentence The cat eats fish in figure 1,
two models could be acquired. One associated to
cat (head) obtained from the dependency The —
detmod→ cat and another associated to eat, us-
ing the dependencies cat —subj→ eat ←dobj—
fish. Due to the big amount of models, our first
approach for the experiments is to constraint the
models to those having their head disambiguated.

The models have been obtained from two cor-
pus with different characteristics. On one hand
SemCor (Miller et al. 93), which is mostly dis-
ambiguated but due to his relatively small size
(about 250.000 words) has a low sense coverage.
On the other hand, Senseval-II training corpus
for the English Lexical Sample task (Senseval)
whose 8,611 examples has only one word disam-
biguated. Table 2 shows the figures of the models
obtained from each corpus for the words to be
disambiguated in the test.

Notice that even we have obtained more mod-
els from Semcor, their sense distribution and cov-
erage is different than for the Training. While
Training models are distributed among all the
senses in the test corpus, the models obtained
from Semcor are associated to the most frequents.

Number of Models

Semcor 7,344

Senseval 4,438

Table 2: Models acquired

6 Results

Table 3 shows the results (Precision and Recall)
obtained for the SENSEVAL-II English Lexical
Sample test using the models obtained from Sem-
cor and the Senseval corpus respectively.

Using the models obtained for each corpus,
three different experiments have been performed,
varying the level of semantic information used to
determine the similarity between object and role:
without any semantic information (Syntax), us-
ing only the information from WordNet (Synset)
and using the information associated to each sense

in the Mcr.

For the syntactic attributes, we constraint the
object that could instantiate a role, to those
whose syntactic relation and preposition is the
same. This restriction is probably too strong and
drastically reduces the impact of increasing the
semantic information.

Models

Senseval Semcor

P R P R

MCR 48.3 26.9 28.3 15.9

Synset 48.2 26.9 27.5 15.5

Syntax 47.9 26.8 27.0 15.2

Table 3: Results in Precision and Recall

Although at a synset level, the results of
the system seem to be modest, when using the
(coarse) grained evaluation of SENSEVAL-II our
system reach the 59% of precision (41% using
Semcor). We believe that this big diference in
the figures is due to the lack of applicable models
of the right sense, specially when using Semcor (a
close-world-assumption is implicit in our formal-
ization and the system chosses the most similar
model among all the applicable).

Checking if each test sentence has at least a role
with the same syntactic relation and preposition
for a model associated to the correct sense to be
disambiguated, we establish an upper bound of
70% for our system using the actual models.

We consider that the results obtained prove
the feasibility of our approach, although they are
slightly below the state-of-the-art of WSD, but
highly above on the current figures for Semantic
Parsing. Moreover, we should take into account
than we have made no tuning (neither on the at-
tributes nor on the similarity functions) and that
the models used where obtained automatically.

7 Discussion

The automatically obtained models suffer several
limitations and do not always allow to build an
adequate semantic representation. For instance
for a piece of sentence like ... clean dental surface
... with a the dependency analysis ( dental —
mod→ surface —dobj→ clean), the system will
build a representation for dental —mod→ sur-
face which is basically associated to the semantic
of his head, surface. As a consequence the verb
clean is wrongly disambiguated, as the models as-



sociated to clean#v#3 (to clean a house) are the
ones more related to clean a surface. The funda-
mental piece of information that a dental surface
is also a body part is not captured by our automat-
ically obtained models, while more simple WSD
systems, such as using a bag of words, are able to
capture and use that relation.

On the other hand, the current prototype
makes a shallow integration of the syntactic and
semantic level, so the system is sensitive to errors
in the syntactic analysis being not able to disam-
biguate a word if a dependency analysis is not
obtained.

Regarding the models acquired for Semcor, al-
though fully disambiguated, they do not provide
enough coverage. This sparseness makes more dif-
ficult to cope with inconsistencies or errors from
the corpus.

The disambiguation capability of the system
also depends greatly on the information available
to discriminate the senses. Thus, it could be dif-
ficult be able to distinguish between senses whose
Mcr representation is almost the same (e.g. the
five senses of child)).

8 Conclusions & Future Work

We have shown that it is possible to develop a
more robust and flexible architecture for Seman-

tic Parsing using CSP techniques and that it
can be solved efficiently using well-known opti-
mization algorithms (such as relaxation labeling
algorithms). Moreover, this formalization can be
extended to other models that combine syntactic
and semantic information (e.g. FrameNet).

In this paper we have presented an architecture
able to integrate Semantic Parsing and WSD,
where both tasks could collaborate. The system
has been tested in a WSD task (SENSEVAL-II
English Lexical Sample) using automatically ac-
quired models.

Future lines of research include, first to extend
the level of integration of Semantic Parsing and
WSD using richer semantic models, and second to
improve the system itself (e.g. tuning the similar-
ity functions, propagating semantic information,
etc.).
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