
Making Wordnet Mappings Robust�Jordi Daud�e y Llu��s Padr�oTALP Researh CenterUniversitat Polit�enia de CatalunyaBarelona.fdaude,padrog�lsi.up.es German RigauIXA GroupEuskalerriko UnibersitateaDonosti.frigaug�lsi.ehu.esResumen: La onstrui�on de los reursos neesarios para el proesamientosem�antio a gran esala es una tarea que implia a grandes grupos de investigai�ondurante largos periodos de desarrollo. Los resultados de estos proyetos son, nor-malmente, grandes y omplejas estruturas sem�antias, no ompatibles on otrosreursos desarrollados en proyetos y esfuerzos anteriores. Para mantener la om-patibilidad entre wordnets de distintas lenguas y versiones es fundamental disponerde una herramienta automtia de alta preisi�on. Este art��ulo presenta una val-idai�on preisa, tanto uantitativa omo ualitativa de la metodologia usada por(Daud�e, Padr�o, and Rigau, 2001) para onetar dos versiones distintas de WordNet.Comprobamos la preisi�on de la t�enia us�andola para enlazar una versi�on de wnon ella misma, lo que permite no s�olo la evaluai�on uantitativa, sino tambi�en unestudio ualitativo de los asos de error y un a�nado del algoritmo.Palabras lave: Mapping de ontolog��as, WordNet, Etiquetado por relajai�onAbstrat: Building appropriate resoures for broad{overage semanti proessingis a hard and expensive task, involving large researh groups during long periodsof developement. The outomes of these projets are, usually, large and omplexsemanti strutures, not ompatible with resoures developed in previous projetsand e�orts. To maintain ompatibility between wordnets of di�erent languagesand versions, past and new, it is fundamental to dispose of a high aurate tool.In this paper we present an aurate, quantitative and qualitative validation ofthe methodology used by (Daud�e, Padr�o, and Rigau, 2001) to map two WordNetversions. We hek the auray of the tehnique by applying it to map a wn versiononto itself, whih enables not only quantitative evaluation but also a qualitativestudy of the error ases and algorithm tuning.Keywords: Omtology mapping, WordNet, Relaxation labelling1 IntrodutionUsing large sale lexio-semanti knowledgebases, as WordNet, has beome a usual pra-tie for most Natural Language Proessing.The di�ussion and suess of WordNet havedetermined the emergene of several projetsthat aim either to build wordnets for lan-guages other than English1 (Hamp and Feld-weg, 1997; Artale, Magnini, and Strappar-ava, 1997) or to develop multilingual word-nets. The most important projet in thisline was EuroWordNet (ewn) (Vossen, 1998),� This researh has been partially funded by theSpanish Researh Department (TIC2000-0335-C03-02, TIC2000-1735-C02-02), by the European Comis-sion (IST-2001-34460), and by the Catalan ResearhDepartment (CIRIT 1999SGR-150).1see those wordnets urrently under developementat http://www.globalwordnet.org/

and now, is meaning (Rigau et al., 2002).meaning has designed the MultilingualCentral Repository (mr) to at as a multi-lingual interfae for integrating and distribut-ing all the semanti knowledge aquired inthe projet. The mr follows the modelproposed by the EuroWordNet projet. Eu-roWordNet (Vossen, 1998) is a multilinguallexial database with wordnets for severalEuropean languages, whih are strutured asthe Prineton WordNet (Fellbaum, 1998).Building appropriate resoures for broad{overage semanti proessing is a hardand expensive task, involving large researhgroups during long periods of developement.For example, dozens of person-years are beeninvested world{wide into the development ofwordnets for various languages. The out-omes of these projets are, usually, large and



omplex semanti strutures, not ompatiblewith resoures developed in previous projetsand e�orts. This fat has severely hamperedHuman Language Tehnology (HLT) devel-opment.meaning plans to integrate into the mrseveral large-sale resoures developed in pre-vious projets and e�orts. Initially, mostof the knowledge aquired in meaning willbe derived from wn1.6 (seletional pref-erenes automatially aquired from Sem-Cor and BNC). The Italian WordNet andthe MultiWordNet Domains are aligned town1.6 (Bentivogli, Pianta, and Girardi, 2002;Magnini and Cavagli�a, 2000), but the Span-ish, Catalan and Basque wordnets are alignedto wn1.5 (Atserias et al., 1997; Ben��tez et al.,1998). Further, the EuroWordNet Base Con-epts where seleted from wn1.5, and theyserve to hok the EuroWordNet Top Ontol-ogy.To solve this version gap and in order tominimize side e�ets with respet other Eu-ropean initiatives (Balkanet, EuroTerm, et.)and wordnet developments around GlobalWordNet Assoiation, meaning plans to pro-vide a generi, powerfull and robust mappingtool and a new set of improved mappings.That is, for meaning it is fundamental toahieve a high performane and aurate toolto maintain ompatibility between wordnetsof di�erent languages and versions, past andnew. Nevertheless, automati ontology map-ping methods are diÆult to evaluate. Handheking of a small {statistially signi�ant{sample of the performed onnetions, pro-vides a quantitative idea of the auray ofthe tehnique, but does not allow to drawqualitative onlusions.This paper presents an in deep study ofthe robustness and aurateness of the re-laxation labelling algorithm for mapping al-ready existing wordnets. The (Daud�e, Padr�o,and Rigau, 2001) relaxation labelling basedtehnique is used to map wn��.5 onto itself,whih enables not only quantitative evalua-tion, but also the qualitative study of errorases. In addition, we also evaluate the be-haviour of the tehnique in the more realistiase of mapping non-idential hierarhies, byrandomly erasing synsets from either the tar-get or the soure opy of the used WordNet.

2 Method DesriptionRelaxation labelling (rl) is a generi namefor a family of iterative algorithms whihperform funtion optimization, based on lo-al information, but with global e�ets. See(Torras, 1989) for a summary, or (Padr�o,1998; Atserias, Padr�o, and Rigau, 2001) forprevious appliations to nlp tasks. One ofits most remarkable features is that the fo-us problem is modelled in terms of om-patibility/inompatibility onstraints (whihmay be hand-written, statistial, mahine-learned, . . . ) between variable{label pairs.rl uses onstraints to inrease or dereasethe weight for a variable label. In our ase,onstraints inrease the weights for the on-netions between a soure synset and a tar-get synset. Inreasing the weight for a on-netion implies dereasing the weights for allthe other possible onnetions for the samesoure synset. To inrease the weight for aonnetion, onstraints take into aount al-ready onneted nodes that have the samerelationships in both taxonomies.The problem is modelled with a variablefor eah node in the soure taxonomy, whihhas as possible labels all andidate onne-tions for that node (see Figure 1). Usedonstraints rely on heking the existeneof a onneted anestor/desendant for bothends of a andidate onnetion. Complex-ity of onstraints varies on the allowed dis-tane from the andidate onnetion and inthe simultaneously heked onditions. Therl algorithm will selet the label assignmentfor all variables (i.e. the onnetion for eahnode) whih better satis�es all onstraints.More details on the algorithm and onstraintsan be found in (Daud�e, Padr�o, and Rigau,2000; Daud�e, Padr�o, and Rigau, 2001).Figure 1 shows an example of possible on-netions between two taxonomies. For sourenode S1, onnetion C4 will have its weightinreased due to C5, C6 and C1, while on-netions C2 and C3 will have their weightsdereased. Eventually, label C4 will be as-signed to variable S1.3 Validation via automappingIn order to evaluate the performane of thealgorithm, we mapped the nominal part ofwn1.5 onto itself. The nominal wn1.5 is al-most a tree {few nodes have more than onehyperonym{ and onsists of 60,557 nodes, 11of whih are roots, and 47,110 (77.79%) leafs.
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C6Figure 1: Example of andidate onnetionsThe andidate onetions for a sourenode are obtained retrieving all synsets inthe target taxonomy for all words ontainedin the soure synset. Sine the target taxon-omy ontains a opy of the soure synset, allsynsets have at least one andidate onne-tion. Inwn1.5, 37,204 synsets are single-link,i.e. they have only one andidate onnetion.They don't need to be disambiguated, butare helpful to solve ambiguity for other nodesonneted with them. The remaining 23,353synsets (38.56%) are multiple-link, i.e. havemore than one andidate onnetion. Eahmultiple-link sysnset has between 2 and 66andidates, with an average of 4.26.Using the algorithm with the same taxon-omy as soure and target not only is usefulto evaluate its orretness and eÆieny, butalso to tune some of the used onstraints, andto detet existing gaps and inorporate newonstraints to over them.In this paper we analyze the behaviour ofthe algorithm on an inremental basis, start-ing with the simplest onstraint on�gura-tion, and progressively extending the usedmodel to enhane its performane.3.1 Immediate onnetion (ii)onstraintsThe simplest onstraint set heks for the ex-istene of a onnetion between immediate(ii) hypernyms or hyponyms at both ends ofthe andidate onnetion, suh as (C4; C1) inFigure 1.Table 1 presents the results obtained usingii onstraints. Preision and reall are givenover single and multiple link synsets. Reallis omputed as the perentage of soure nodesthat keep the orret onnetion among theirproposed targets. Preision is omputed as

the number of proposed targets that are or-ret onnetions.Over trivial single-link synsets, the perfor-mae is obviously perfet. Over the multiple-link subset, some orret links are disardedby the algorithm, yielding a reall below100%. There are only ten error ases {grouped in four lusters{ whih an be foundin Figure 2.In eah luster, the error in one of thesynsets auses the error in the others. Forinstane, ase A in Figure 2 is more detailedin Figure 3, where we an observe that thetarget synset 00145061 is only reinfored byonstraint C1, while target 08150656 reeivessupport from onstraints C2 and C3, ausingit to be wrongly seleted.ii iib#nodes pre.-re. pre.-re.single-link 37,204 100%-100% 100%-100%multiple-link 23,353 93.80%-99.96% 93.86%-100%Total 60,557 97.51%-99.98% 97.54%-100%Table 1: Preision-reall results obtained us-ing ii and iib onstraint setsii onstraints provide support for a linkfrom the existene of either a linked hyper-onym or hyponym, but not from the simul-taneous existene of them both. iib on-straints extend the ii set with an extra sup-port for those links with a simultaneouslylinked hyperonym and hyponym. This is pre-isely the ase in the above mentioned errors,sine for instane in ase A, both hyperonymand hyponym for the soure 00145061 arelinked with the respetive hyperonym and hy-ponym for target 00145061, while the hyper-nym for soure 00145061 is not linked withthe hyperonym for the other andidate target08150656.The use of iib onstraint will provide ad-ditional evidene in favour of the orret link,that should overwhelm the evidene providedby two hyponym onstraints supporting thewrong andidate. As an be seen in Table 1,the use of these onstraints produes a reallof 100% and an inrement in preision, solv-ing all wrong links presented in Figure 2.This on�rms the need for B onstraintsto help the disambiguation in ases suh asthose presented in the example. Note thatthis is a general statement, valid for any hier-arhy, sine only lass/sublass relationshipsare being used.
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Figure 2: All wrong links seleted by ii onstraint.
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Figure 3: Details of wrong link in Fig. 2, aseA.3.2 Using extra hyponyminformationAlthough we have a 100% reall, preisionis not perfet yet. This is due to re-maining ambiguity in some nodes. Fig-ure 4 presents an example of suh a node(00026244) that ours either with ii or iibonstraints. Details on the involved relation-ships are also depited: We an observe thatsoure 00026059 is orretly linked sine itshyponyms (00029218 and 00171746) providethe neessary evidene. Contrarily, soure00026244 is not disambiguated beause bothandidates have the same supporting evi-dene: onstraint C1 for one andidate andC2 for the other.This ases ould be solved if knowledege
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Constraint C2
Constraint C1Figure 4: Relationship struture for ambigu-ous node exampleabout the number of daughters of eah nodewas taken into aount. We tested the follow-ing two ways of using this information (seeTable 2 for results):1. zd onstraint (Zero Daugthers): A sim-ple boolean hek onsisting of a on-straint that reinfores a onnetion be-tween two leaf nodes (i.e. when bothhave zero daugthers).2. ed onstraint (Equal Daugthers): Ageneralization of the previous, onsist-ing of a reinforement of a onnetionbetween nodes with equal number ofdaughters.When using onstraints iib+zd, 1,136nodes remain ambiguous, all but three of



iib+zd iib+ed#nodes pre.-re. pre.-re.single-link 37,204 100%-100% 100%-100%multiple-link 23,353 94.90%-100% 94.93%-100%Total 60,557 97.97%-100% 97.98%-100%Table 2: Presion-reall results when usingonstraints on the number of daughters.whih are leaf nodes. One of these three issynset 02323757, presented in Figure 5.
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IIB Constraint C1Figure 5: Example of non-leaf ambiguousnode.It an be observed that the ambiguitybetween targets 02323757 and 02323518 isaused by iib onstraints C1 and C2 in Fig-ure 5, and sine 02323757 is not a leaf, zdonstraint does not apply. If onstraint edis used instead, the ambiguity is orretlysolved, sine the synset for dog ollar is or-retly linked, ausing its hyperonym to bealso orrely disambiguated.When using iib+ed onstraints, theamount of remaining ambiguous nodes is1,129, all of them leafs. Leaf nodes are theweakest point of the algorithm, sine theyhave no desendants to provide information.Thus, when a node has as andidate tar-gets two leaf sibling synsets, disambiguationis not possible using only hyper/hyponymyrelationships. Example of suh ases are thethree leaf nodes in Figure 6.3.3 Using other relationshipsAlthough the main struture of WordNetrelies in the taxonomial hyper/hyponymyrelationships, it ontains many other re-lationships. The nominal part inludesalso antonymy, meronym, holonymy and at-tribute. The former three are noun-to-noun,i.e. internal to the nominal part, and thelater relates noun-to-adj.
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 gondolaFigure 6: Example of ambiguity in leaf nodesSine eah ambiguous synset has di�er-ent meronyms, using an ii onstraint on thisrelationship enables the algorithm to solvethose ambiguity ases. Results when usingall noun-to-noun relationships (plus ed on-straints) are presented in the Strutural ol-umn in Table 3.With this model, there are 765 nodes thatstill remain ambiguous, sine they do nothave any other relationship we an use toprovide extra information to help the dis-ambiguation proess. Thus, the use of non-strutural information (i.e. not related tonode relationships but to node similaritymeasures) will be neessary. Some of thoseases appear in Figure 7.Strutural Strutural+wg#nodes pre.-re. pre.-re.single-link 37,204 100%-100% 100%-100%multiple-link 23,353 96.54%-100% 99.991%-100%Total 60,557 98.64%-100% 99.997%-100%Table 3: Preision-reall results obtainedwith eah onstraint model3.4 Using non-struturalinformationTo disambiguate ases in whih a deisionis not possible using only relationship-basedonstraints, we may extend our model withnon-strutural information whih supportsthe onnetion between similar nodes. Thisobviously requires a way of omputing nodesimilarity that does not depend on the rela-tionships among them. In the ase of wn wemay use information internal to the node:1. w onstraint (oinident Words). Thelarger the number of oinidenes in thewords of two synsets, the more similarthey are onsidered.
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(a) (b) (c) (d)Figure 9: Examples of deteted anomaly synsets.in word list) that should probably be re-strutured. Most involve di�erent sub-kinds of a plant or animal, or moregenerally, speializations of the sameonept that are daughters of a toogeneral onept. For instane, synsetsfor [redpoll,Carduelis ammea℄ and [red-poll,Carduelis hornemanni℄ in Figure 9are hildren of [�nh℄, without any in-termediate [redpoll℄ onept. The sameours with [angle braket,braket℄ and[square braket,braket℄ in Figure 7, be-ing both under [puntuation,puntua-tion mark℄, while probably an interme-diate [braket℄ onept would be nees-sary.Regarding the evolution of those asesthrough inreasing wn versions, we �nd thatmost of them are maintained. Nevertheless,hanges exists, and may be lassi�ed as:� Undistinguishable synsets thatare slightly distinguished in anewer version. This is the ase of[myrrh,gum myrrh,sweet iely℄, whihis undistingushable in wn1.5, while inlater versions only one of both synsetsretains the sweet iely variant� Single synsets that are dupliated innewer versions. This is the ase of [ati-nide series℄ (Figure 9d) whih is a singlesynset in wn1.5 and appears dupliatedin 16. and 1.7.1 versions.� Synsets not inluded in older versionsthat appear dupliated in newer ones,as for instane gutta-perha tree whih isnot in wn1.5, but dupliated in wn1.6and wn1.7.1.
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