
Exercises

Statistical Processing of Natural Language

Winter 2012

1

1 Language Models – MLE & Smoothing

Retrieve the exercises done in class about MLE and Smooting, and modify them to perform
Linear Interpolation smoothing. Proceed as follows:

1. Extend the program mle.py to estimate the coefficients λ1,λ2,λ3 for a linear Interpo-
lation smoothing. Write the coefficients into the first line of the model file, followed
by the trigram parameters.

Coefficient estimation via deleted interpolation:

λ1=λ2=λ3=0
foreach trigram xyz with count(xyz) > 0

depending on the maximum of the following three values:

case
count(xyz)−1
count(xy)−1

: increment λ1 by count(xyz)

case
count(yz)−1
count(y)−1

: increment λ2 by count(xyz)

case
count(z)−1

N−1
: increment λ3 by count(xyz)

normalize λ1,λ2,λ3

2. Extend the program smooth.py to load the Linear Interpolation coefficients in the
first line of the file, load the rest of the model normally, and use Linear Interpolation
to smooth the trigram probabilitites:

P (z|xy) = λ1P (z) + λ2P (z|y) + λ3P (z|xy)

Compare the results with those obtained in the smoothing versions used in class.

2

2 Supervised Methods – Max. Entropy Classifiers

1. (a) Use the encoded corpus corpus/efe/f50/train.0 to learn a Maximum En-
tropy Model using the megam i686.opt executable:
./megam_i686.opt -quiet -fvals multiclass corpus/efe/f50/train.f0 > f50.mem

(b) Test the performance of the module running megam in test mode on the corpus
corpus/efe/f50/test.f0:
./megam_i686.opt -fvals -predict f50.mem multiclass corpus/efe/f50/test.f0 >out

(c) Complete the program classifier.py to compute the probability of each class
for each input example, and produce the same output than megam test mode.
Use the correct answer in the test files to compute the accuracy statistics.

The probability that the ME model assigns to a class a given a document b is
computed as:

p(a | b) =
exp(

∑k
j=1 λjfj(a, b))

Z(b)
; where Z(b) =

∑
a

exp(
k∑

j=1

λjfj(a, b))

Each λj corresponds to a combination j = (feature, class). fj(a, b) is the active
value of j for document b and class a (note that fj(a, b) = 0 if a 6= j.class, and
that it is the value of the feature in the document otherwise).

NOTES:

• The corpus files contain one document example per line. The first field is the

right answer (document class) used in train and in evaluation. The other fields

are pairs <feature,value> representing that document

• The produced model file f50.mem has the following format: The first field in

each line is a feature name x. The other fields are the λj values for each class

j = (x, i);∀i = 0 . . . 12.

2. (a) Modify the program classifier.py to output not only the most likely class,
but all classes with a probability over a given threshold. Modifiy the evaluation
to compute also precision, recall, and F1. Check how results vary depending on
the given threshold.

(b) Train and test a classifier using the corpus corpus/efe/f100/train.f0 for
training and the corpus corpus/efe/f100/test.f0 for testing. Compare the
performance of this classifier with that of the classifier obtained in the previous

3

exercise using corpus f50. Perform a hypothesis test to find out whether the
difference is statistically significant.

(c) Perform a cross-validation evaluation for the same cases above, using corpus
corpus/efe/f50/train.* and corpus/efe/f50/test.* to train and test five
folds of one classifier, and corpus/efe/f100/train.* and corpus/efe/f100/test.*

for the other. Discuss the changes in the statistical significance of the difference
between both models.

NOTE: Five-fold cross-validation consists of repeating the train-test cycle five times,
using different partitions of the corpus. That is, train with corpus train.i and test
with corpus test.i for i = 0 . . . 4.

4

