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Foreword

“Cuando creíamos que teníamos todas las respuestas, de pronto, 
cambiaron todas las preguntas.” 

- Mario Benedetti

"When we thought we had all the answers, suddenly, 
they changed all the questions. "

- Mario Benedetti
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Foreword

● Where are the answers to the new (and old) questions?

● Introspection? Experts?… 
● From many people? … “Wisdom of the Crowd”?
● Books, News, Tweets, … Textual Sources?
● Multimedia sources? Images, Radio, TV ...
● Sensors? IoT? ...
● Anything? Everything?

● Information overload … 
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Foreword

● Information overload

● infobesity, infoxication!
● by Bertram Gross, The Managing of Organizations: The administrative 

struggle (1964)
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Foreword

● Information overload

● infobesity, infoxication!
● by Bertram Gross, The Managing of Organizations: The administrative 

struggle (1964)
● by Alvin Toffler, Future Shock (1970)

● Seneca complained that “the abundance of books is distraction” in the 
1st century AD!
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Foreword

● Information overload occurs when the amount of input to a system 
exceeds its processing capacity.

● Decision makers have fairly limited cognitive processing capacity. 
● Consequently, when information overload occurs, it is likely that a 

reduction in decision quality will occur.

● Always when advances in technology have increased a production of 
information.
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Natural Language Processing

● Unstructured digital content accounts for 90% of all information [
White paper IDC 2014]   …

● Usually in the form of texts (also audio, video, etc.) and documents in 
multiple languages ...

● Only appropriate NLP tools can access this wealth of knowledge …
● NLP among the top 10 strategic technology trends for 2019 according 

to Gartner
● Spanish Plan for Language Technology 2015-2020

http://www.coveo.com/~/media/Files/WhitePapers/Coveo_IDC_Knowledge_Quotient_June2014.ashx
https://www.gartner.com/en/newsroom/press-releases/2019-02-18-gartner-identifies-top-10-data-and-analytics-technolo
https://www.plantl.gob.es/
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What happens in Internet every second? (july 2015)
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What happens in Internet every second? (july 2015)

https://sites.google.com/site/distributedlittleredhen
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… not only from Social Media

● LexisNexis receives daily 1.5M news.
● ?M judicial sentences, transcriptions ...
● ?M Electronic Health Records (EHR) …
● ?M Patents …
● … all kinds of e-documents …

● … and only appropriate techniques can handle all this digital data
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Current AI challenges

● Natural Language Understanding
● Image/video Understanding
● Process/agents/services Understanding
● Database Understanding
● Web Understanding
● ...
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Motivation
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Motivation

党
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Motivation

מִפלְגָהָ
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Motivation

พรรค
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Motivation

party
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Motivation

party

 Which sense of “party”?
 How many senses have “party”?
 How these senses are translated to other languages?
 How a computer should represent these senses?
 How these senses combine to form phrases?
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Motivation

The lexical-semantic knowledge allows us to better characterize the 
different meanings of the words

– In 1992 Perot tried to organize a third party at the national level
– She joined the party after dinner 
– They organized a party to search for food
– He planned a party to celebrate Bastille Day
– The party of the first part
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Motivation

● This better characterization may consist of:
● Domain tags to each word sense

– party1
n
: politics

– party4
n
: free-time

● Semantic relations that apply to each concept
– party1

n
: member of: political_system1

n

– party4
n
: hyponym: wedding1

n

● Lexical Knowledge Bases (LKBs)?
● Ontologies?
● Distributional Representations, now word embeddings?
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Some personal background

● 1989-1992 Project ACQUILEX
● 1992-1995 Project ACQUILEX II
● 1996-1999 Project EuroWordNet
● 1998 PhD in Artificial Intelligence @ UPC

● “Automatic Acquisition of Lexical Knowledge from MRDs”
● DGILE Vox – Biblograf, some other Bilingual Dictionaries and 

WordNet
● 2002-2004 Project MEANING

● Multilingual Central Repository (MCR)
● 2008-2011 KYOTO
● 2013-2015 NewsReader
● ...

https://www.cl.cam.ac.uk/research/nl/acquilex/
https://www.cl.cam.ac.uk/research/nl/acquilex/
http://www.illc.uva.nl/EuroWordNet/
http://adimen.si.ehu.es/%7Erigau/publications/thesis-rigau.pdf
https://web.archive.org/web/20110914010505/http://nlp.lsi.upc.edu/projectes/meaning/
http://adimen.si.ehu.es/web/MCR
http://www.kyoto-project.eu/
http://www.newsreader-project.eu/
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Lexical Knowledge

● Which Knowledge is needed by a concrete NLP system?

● Where is this Knowledge located?

● Which automatic procedures can be applied?
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Lexical Knowledge

● Which Knowledge is needed by a concrete NLP system?

● Phonology: phonemes, stress, etc.
● Morphology: lemma, POS, etc.
● Syntactic: category, subcat., etc.
● Semantic: class, Selectional Preferences, etc.
● Pragmatic: usage, registers, domains, etc.
● Translations: translation equivalences
● ...
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Lexical Knowledge

● Where is this Knowledge located?

● Human brain

● Structured Lexical Resources: 
● Monolingual and bilingual MRDs
● Thesauri, encyclopedias

● Unstructured Lexical Resources: 
● Monolingual and bilingual Corpora 

● Mixing resources
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Lexical Knowledge

● Which automatic procedures can be applied?

● Prescriptive approach (~ supervised)
● Machine-aided manual construction

● Descriptive approach (~ unsupervised)
● Automatic acquisition from pre-existing Lexical Resources

● Mixed approach
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Where is this Knowledge located?

● Human brain: 

● WordNet (Miller et al. 90, Fellbaum 98)
● Semantic network with >100,000 concepts

● CYC ontology (Lenat 95, Malesh et al. 96, Matustek et al. 06)
● 900 person-year of effort to produce 100,000 terms

● SUMO (Niles & Pease 01, Niles & Pease 03)
● IEEE ontology with ~25,000 terms and ~80,000 axioms

● VerbNet (Kipper-Schuler 06), FrameNet (Baker et al. 98, Fillmore 12)
● Verb lexicons with syntactic and semantic patterns

● UMLS (Bodenreider 04)
● Medical lexicon integrating 154 terminological resources for 25 languages

https://wordnet.princeton.edu/
https://github.com/asanchez75/opencyc
http://www.adampease.org/OP/
https://verbs.colorado.edu/verbnet/
http://framenet2.icsi.berkeley.edu/
https://www.nlm.nih.gov/research/umls/index.html
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Where is this Knowledge located?

● Structured resources: monolingual MRDs

● LDOCE Longman Dictionary for Contemporary English

● learner’s dictionary
● 35,956 entries and 76,059 definitions
● 86% semantic and 44% pragmatic codes
● controlled vocabulary of 2,000 words
● (Boguraev & Briscoe 89)
● (Vossen & Serail 90)
● (Bruce & Guthrie 92), (Wilks et al. 93)
● (Dolan et al. 93), (Richardson 97)
● (Green et al. 04)
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Where is this Knowledge located?

● Structured resources: other MRDs

● Monolingual MRDs
● Webster’s (Jensen & Ravin 87)
● LPPL (Artola 93)
● DGILE (Castellón 93), (Taulé 95), (Rigau 98), (Climent 98)
● CIDE (Harley & Glennon 97)
● AHD (Richardson 97)
● WordNet (Harabagiu 98)

● Bilingual MRDs
● Collins Spanish/English (Knigth & Luk 94)
● Vox/Harrap’s Spanish/English (Rigau 98)
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Where is this Knowledge located?

● Structured resources: thesauri and encyclopaedia
● Roget’s Thesaurus 

● 60,071 words in 1,000 categories
● (Yarowsky 92), (Grefenstette 93), (Resnik 95), (Jarmasz 12)

● Wikipedia 
● ~ 48M content articles, 294 active wikipedias 
● A source for mining meaning (Medelyan et al 09)
● Also used as multilingual corpora 
● DBpedia (Lehmann et al. 12)
● BabelNet (Navigli and Ponzetto 12)

● but also Wiktionary, Wikidata, OmegaWiki ...
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Where is this Knowledge located?

● Unstructured resources: corpora
● Monolingual and Bilingual
● Raw or annotated
● Main source of lexical knowledge 
● Distributional Semantics (Distributional hypothesis): 

● Words that are used and occur in the same contexts tend to purport 
similar meanings (Harris 54)

● a word is characterized by the company it keeps (Firth 57)
● Basis of modern Statistical Semantics and Neural Language Models 

● Sketch Engine (Kilgarriff et al. 14, Kunilovskaya 17)
● NoSketchEngine (Rychlý 07) 
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Acquisition of Lexical Knowledge from MRDs

● Why MRDs?
usually “contain spelling, pronunciation, hyphenation, capitalization, usage 
notes for semantic domains, geographic regions, and propiety; etymological, 
syntactic and semantic information about the most basic units of the language” 
(Amsler 81)

● MRDs describe the world in a particular language
● But:

● Conventional dictionaries are not systematic
● Dictionaries are built for human use
● Implicit Knowledge

● words are described/translated in terms of words
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Acquisition of Lexical Knowledge from MRDs

flor Organo complejo de la reproducción sexual en las plantas fanerógamas, 
procedente de la evolución de las hojas de un brote, y formado por órganos 
generadores de uno o de dos sexos, llamados estambres y pistilos, 
rodeados o no por las piezas de una envoltura o periantio simple, llamadas 
tépalos, o doble, llamadas sépalos y pétalos.
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Acquisition of Lexical Knowledge from MRDs

jardín_1_1 Terreno donde se cultivan plantas y flores ornamentales.
florero_1_4  Maceta con flores.
ramo_1_3 Conjunto natural o artificial de flores, ramas o hierbas.
pétalo_1_1 Hoja que forma la corola de la flor. 
tálamo_1_3 Receptáculo de la flor. 
miel_1_1 Substancia viscosa y muy dulce que elaboran las abejas, en una 

distensión del esófago, con el jugo de las flores y luego depositan 
en las celdillas de sus panales. 

florería_1_1 Floristería; tienda o puesto donde se venden flores. 
florista_1_1 Persona que tiene por oficio hacer o vender flores.
camelia_1_1 Arbusto cameliáceo de jardín, originario de Oriente, de hojas 

perennes y lustrosas, y flores grandes, blancas, rojas o rosadas 
(Camellia japonica). 

camelia_1_2 Flor de este arbusto. 
rosa_1_1 Flor del rosal.
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Global Wordnet Grid

● WordNet (Miller et al. 90, Fellbaum 98)
● Multilingual Central Repository (MCR) (Gonzalez-Agirre et al. 12)

● EuroWordNet Framework: EN, ES, CAT, EUS, GAL, PO
● WordNet Domains, BabelDomains, Base Concepts
● Top Ontology, and the AdimenSUMO ontology

● Open Multilingual WordNet (Bond and Paik 12, Bond and Foster 13)
● GalNet (Gomez-Guinovart 11, Solla and Gomez-Guinovart 17)
● English WordNet (McRae et al. 19)

● Global WordNet Association
● Wordnets in the world 
● Colaborative Inter-Lingual-Index (CILI)
● Toward Multimodal WordNet workshop @ next LREC 2020 

https://wordnet.princeton.edu/
http://adimen.si.ehu.es/web/MCR
http://compling.hss.ntu.edu.sg/omw/
http://sli.uvigo.gal/galnet/
https://github.com/globalwordnet/english-wordnet
http://globalwordnet.org/
http://globalwordnet.org/resources/wordnets-in-the-world/
http://compling.hss.ntu.edu.sg/iliomw/ili


42

Language Independent



43From Andy Steinbach (NVIDIA)



44

Deep visual-semantic alignments for generating image 
descriptions (2014)
A Karpathy, L Fei-Fei
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StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks (2016)
Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, 
Xiaogang Wang, Dimitris Metaxas
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LipNet: Sentence Level Lipreading (2016)
Yannis M. Assael, Brendan Shillingford, Shimon Whiteson, Nando 
de Freitas
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A Style-Based Generator Architecture for Generative 
Adversarial Networks (2018)
Tero Karras, Samuli Laine, Timo Aila
https://thispersondoesnotexist.com
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Text2Scene: Generating Compositional Scenes from Textual 
Descriptions (2018)
Fuwen Tan, Song Feng, Vicente Ordonez 
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Neural Language Models

● Static word embeddings
● word2vec (Mikolov et al. 13a, 13b, 13c)
● GloVe (Pennington et al. 14)
● FastText (Bojanowski et al. 17)
● Dict2vec (Tissier et al. 17)

● Contextual word embeddings
● ELMo (Gardner et al. 17) 
● GPT-2 (Radford et al. 19)
● BERT (Deblin et al. 19)
● Transformers Talk2transformer
● Glue leaderboard

● something2vec, awesome2vec …

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://github.com/tca19/dict2vec
https://github.com/allenai/allennlp
https://github.com/openai/gpt-2
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://talktotransformer.com/
https://gluebenchmark.com/leaderboard/
https://gist.github.com/nzw0301/333afc00bd508501268fa7bf40cafe4e
https://github.com/MaxwellRebo/awesome-2vec
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word2vec

● Fast and simple neural models
● Large collections of texts
● Two flavours:

● continuous bag-of-words (CBOW): context -predict→ word
● Skip-gram: word -predict→ context

● Unsupervised, negative sampling
● Words as vectors with a few hundreds of weights (Vector Space)
● No feature engineering

● brother - boy + girl ~ sister
● queen - woman + man ~ king
● biking - today + yesterday ~ biked
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word2vec

● Meaningful distances and relations (!) … similarity, analogy … 
● Languages are (to a large extent) isometric in word embedding space (!) 
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Cross-lingual Word Embeddings

https://github.com/facebookresearch/MUSE (Conneau et al. 17)
https://github.com/artetxem/vecmap (Artetxe et al. 16, 17, 18a, 18b)

https://github.com/facebookresearch/MUSE
https://github.com/artetxem/vecmap
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… and back!

https://github.com/websail-nu/torch-defseq (Noraset et al. 2017)

https://github.com/websail-nu/torch-defseq
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… and back!

https://github.com/agadetsky/pytorch-definitions (Gadetsky et al. 2018)

https://github.com/agadetsky/pytorch-definitions
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Semantics vs pragmatics

Questions from lawyers that were taken from official court records (I) 

● Q: You were there until the time you left, is that true?
● Q: You don't know what it was, and you didn't know what it looked like, 

but can you describe it?
● Q: How far apart were the vehicles at the time of the collision?
● Q: Was it you or your brother that was killed in the war? 
● Q: How many times have you committed suicide?
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Semantics vs pragmatics

Questions from lawyers that were taken from official court records.(II) 

● Q: What happened then?
A: He told me 'I have to kill you because you can identify me.' 
Q: Did he kill you?

● Q: Do you recognize that picture?
A: That's me.
Q: Were you present when that picture was taken? 

● Q: Now, Mrs. Johnson, how was your first marriage terminated?
A: By death.
Q: And by whose death was it terminated? 
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Semantics vs pragmatics

Questions from lawyers that were taken from official court records.(III) 

● Q: "Doctor, before you performed the autopsy, did you checked its pulse?"
● A: "No"
● Q: "Did you check its blood pressure?"
● A: "No"
● Q: "Have you checked if he was breathing?"
● A: "No"
● Q: "So, it is possible that the patient was alive when you began the autopsy?"
● A: "No"
● Q: "How can you be so sure, Doctor?"
● A: "Because his brain was on my desk in a jar"
● Q: "But could, however, the patient have still been alive?"
● A: "It may have been alive and practicing law somewhere."
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http://ixa2.si.ehu.es/deep_learning_seminar/

http://ixa2.si.ehu.es/deep_learning_seminar/
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https://ixa.eus/master

https://ixa.eus/master
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http://hitz.eus/

http://hitz.eus/
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