
The PlayStation
Reinforcement Learning

Environment (PSXLE)
Iñigo Munárriz, Aitor González, Carlos Domínguez

September 2020

1

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

2

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

3

● New way for evaluating Reinforcement Learning algorithms through games.

● Using a modified version of the PlayStation 1 emulator connected through a

Python API.

● Playstation Learning Environment (PSXLE) supports the OpenAI Gym

interface.

Abstract

4

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

5

● Reinforcement Learning (RL) is a form of Machine Learning which uses a

system of rewards and evaluates how agents interact with a given

environment.

● Agents interact with the environment through actions that are performed

based on the state encoding.

● The state encoding is the way agents “perceive” the environment in a given

instant, getting only the information they need.

Introduction

6

● Deep Q-Networks (DQN) are usually used so agents can interpret even

complex states of the environment.

● Use of computer games provide many advantages such as the simplicity of

the environments and the “score” many games have.

● The goal is to prove PlayStation environment to be interesting in RL.

Introduction

7

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

8

VS

Atari-2600 (1977)

128 B

128

1.19 MHz

5

Playstation 1 (1994)

2 MB

16.6 million

33.9 MHz

14

9

Kula World (1998)
1. Control a ball
2. Collect:

- Coins
- Fruits
- Keys

3. Arrive exit platform

10

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

11

● PSXLE is a toolkit for training agents to play Sony PlayStation 1 games.

● PSXLE is designed following the standards set by ALE (Arcade Learning

Environment).

● Uses an open source PlayStation emulator with the necessary modifications.

○ Adding Inter-Process Communication (IPC) tools.

○ Adding a Python based console API.

■ Translates game actions into console functions.

■ Console functions can then be used by OpenAI Gym.

Implementation

12

Implementation

A visualisation of the Inter-Process Communication used in PSXLE.
13

The Console API supports four primary forms of interaction:

1. General:

a. run and kill (the emulation process).

b. freeze and unfreeze (the emulator execution).

c. speed: sets the speed of the emulation relatively to the default speed of it.

2. Controller:

a. hold_button and release_button: simulates the press down and the release of a given button.

b. touch_button: simulates pressing a button (holding for a little amount of time and releasing).

c. delay_button: adds delay between successive control events.

Implementation

14

The Console API supports four primary forms of interaction:

3. RAM:

a. read_bytes and write_byte: read and write to console memory.

b. add_memory_listener and clear_memory_listeners.

c. sleep_memory_listener and wake_memory_listener

4. Audio/Visual:

a. start_recording_audio and stop_recording_audio: controls when the console records audio.

b. get_screen: returns an array with the visual output of the console.

Implementation

15

● OpenAI Gym uses three game abstraction methods: reset, step and render.

● However, step returns a tuple (the action performed in the game state, the

rewards, etc) and all the elements of the tuple must be returned at the same

time.

● Usually, frame skipping is the answer, when skipping we need less state

encodings.

● Different moves can last different amount of times, so an asynchronous

approach is needed.

● Uses an extra variable to indicate when the move is over.

Implementation

16

Four main actions a player can do in Kula World:

1. Move forward.

2. Look right.

3. Look left.

4. Jump forward.

However, this moves are not abstracted into state encoding literally, instead, some

data of them is gathered after each move is performed.

Implementation

17

Contents of the state encoding after each move:

● RGB array.

● The reward.

● playing: which indicates if the player is still ‘alive’.

● clock: remaining seconds to complete the level.

● sound: and array which describes the audio output (or None if no audio).

Implementation

18

Contents of the state encoding after each move:

● duration_real: time the move took to be done.

● duration_game: remaining time that the move took to complete, relative to

the in-game clock.

● score: the score achieved so far in a current level.

Implementation

19

How the RGB array is processed.

Implementation

20

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

21

● RL needs the reward system or function.

● Reward triggers the optimal behaviour of an agent.

● The higher the reward the more desirable the approach the agent selected is.

● Any event that leads to a bad performance is punished.

● At the end, reward can be considered as an optimization value.

● Using Kula World, a function is designed to transform the game score into a

numerical reward.

Rewards

22

Reward function

Event Score change Reward

Coin collect +250 0.2

Key collect +1000 0.4

Fruit collect +2500 0.6

Win level - +1

Lose level - -1

Rewards

23

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

24

Evaluation
Kula World and PSXLE were used with deepq and ppo2 from
OpenAI Baselines

Problem?
Agent starts at the same situation in each episode.
The agent simply learns how to beat that level in the
shortest time with the highest score.

Solution?
Create additional starting positions using the
save-state option. (kula-random-v1) Different random starting positions.

25

Evaluation
Interesting results

- Level 2: jump decision
- Harder for IA

- Level 3: New physics
- Harder for humans

26

● Abstract
● Introduction
● Playstation and Kula World
● Implementation
● Rewards
● Evaluation
● Conclusions

Index

27

Conclusion
● DeepQ and PPO2 RL algorithms show that they perform vastly differently in

Kula World.

● This approach can be used with any other game.

● By using PSXLE new environments can be evaluated, with more complex and

richer state spaces.

● Games can become optimal environments in which RL algorithms

effectiveness can be evaluated.

28

The End

Bibliography:
https://arxiv.org/pdf/1912.06101.pdf
carlospurves/psxle: A Python interface to the Sony PlayStation console.
Reinforcement learning - Wikipedia

Authors:
Iñigo Munárriz, Aitor González, Carlos Domínguez

29

https://arxiv.org/pdf/1912.06101.pdf
https://github.com/carlospurves/psxle
https://en.wikipedia.org/wiki/Reinforcement_learning

