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1.Abstract 
The paper proposes a new way for evaluating Reinforcement Learning algorithms           
through games using a modified version of the PlayStation 1 emulator that facilitates             
the use of a simple API in order to expose simple controls and achieve rich               
game-sate representations. The Playstation Learning Environment (PSXLE) supports        
the OpenAI Gym interface and the OpenAI Baselines. 

2.Introduction 
Reinforcement Learning is a form of Machine Learning which uses a system of             
rewards and evaluates how agents interact with a given environment. Rewards           
encourage good behaviour and penalize bad ones in order to maximize the notion of              
cumulative reward. It is one of the three basic Machine Learning paradigms followed             
by supervised and unsupervised learning. 
 
Agents interact with the environment through actions that are performed based on            
the state encoding, which is the codified representation of the environment that the             
agent receives in an instant of time. State encoding requires the necessary amount             
of data the agent will use such as the position, how close enemies are, remaining               
time on a clock..., if we try to detail too much the environment it can lead to                 
generalization problems. 
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The state encoding allows to predict the next action using, nowadays, deep neural             
networks like Deep Q-Networks (DQN) so agents can interpret even complex states            
of the environment. Other types of neural networks like, double DQNs, prioritised            
experience replay and Duelling Architectures to enhance the original DQN. 
 
The use of computer games provide many advantages such as the simplicity of the              
environments and the “score” many games usually have, which can act as the             
reward system. 
 
The goal of this paper is to express how PlayStation environment can prove to be               
interesting in the RL area. Kula World is the example of a possible game to train an                 
agent using the PlayStation modified emulator and the example used in this article. 

3.Playstation and Kula World 
The Sony PlayStation 1 console is newer than the normally used for RL, Atari-2600.              
It has 2MB of RAM, 16.6 million displayable colours and 33.9MHz CPU. On the other               
hand, Atari-2600 has 128B of RAM, 128 displayable colours and 1.19MHz CPU.  

 
The PlayStation controller has 14 buttons. 

 
Kula world is a game released in 1998 where the player controls a ball around the                
world. The world consists of a platform where the main objective is to collect coins,               
fruits and keys with the ball and arrive at the exit platform in order to pass the level. 
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4.Implementation 
 

The PlayStation Reinforcement Learning Environment (PSXLE) is a toolkit for          
training agents to play Sony PlayStation 1 games. PSXLE is designed following the             
standards set by ALE (Arcade Learning Environment) and enabling RL research           
using more complex environments and state encoding. 

 
The library is built using a fork of PCSX-R, an open source playstation emulator, with               
a few modifications such as adding a simple Inter-Process Communication (IPC)           
tools and a Python based console API in order to translate game actions into console               
functions so it can be used by OpenAI Gym. 
 

 
A visualisation of the Inter-Process Communication used in PSXLE. 

 
The Console API supports four primary forms of interaction: 
 

● General: 
○ run and kill control the executing process of the emulator. 
○ freeze and unfreeze will freeze and unfreeze the emulator’s         

execution, respectively. 
○ speed is a property of Console which, when set, will synchronously           

set the speed of execution of the console, expressed as a percentage            
relative to default speed. 

● Controller: 
○ hold_button and release_button simulate a press down and release         

of a given controller button referred to here as control events. 
○ touch_button holds, pauses for a specified amount of time and then           

releases a button. 
○ delay_button adds a (millisecond-order) delay between successive       

control events. 
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● RAM: 
○ read_bytes and write_byte directly read from and write to console          

memory. 
○ add_memory_listener and clear_memory_listeners control which     

parts of the console’s memory should have asynchronous listeners         
attached when the console runs. 

○ sleep_memory_listener and wake_memory_listener tell the     
console which listeners are active. 

● Audio/Visual: 
○ start_recording_audio and stop_recording_audio control when the      

console should record audio and when it should stop. 
○ get_screen synchronously returns an np.array of the console’s        

instantaneous visual output. 
 

OpenAI Gym environment uses three game abstraction methods: reset (restarts an           
episode and returns the initial state), step (takes an action as an argument and its               
performed in the environment) and render (renders the current state to a window or              
as texts). 

 
The step function uses an integer which represents the action to perform and returns              
a tuple containing the state, which is the value of the state of the system after                
performing the action given; reward, which gives the reward gained by the            
performing action; a boolean called done, which represents if the level has ended;             
and info, which provides of extra information about the environment. The thing is that              
OpenAI Gym requires all of these to be returned at the same time. This can be done                 
in two different ways: frame skip and asynchronous run. 

 
The first one works well with simple games, but is not always optimal if different               
moves require different amounts of time to finish. If the incorrect quantity of frames is               
skipped a move can be considered as not finished and can lead to problems.              
Therefore, the second option is used sometimes, which requires a variable which            
allows us to know when the move is over. PSXLE lets this to be easily implemented                
using memory listeners that respond to changes in RAM. 
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In the particular example of Kula World, there are 4 main actions that players can do:                
move forward, look right, look left, and jump forward. 

● Move forward: moves the player 1 square forwards on the platform, in the             
direction that the camera is facing. 

● Look right: Rotate the direction of view 90 degrees clockwise, about the line             
perpendicular to the platform. 

● Look left: Rotate the direction of view 90 degrees anti-clockwise, about the            
line perpendicular to the platform. 

● Jump forward: moves the player 2 squares forwards, over the square in front             
of it. If the player jumps onto a square that does not exist, the game will end. 

 
The abstraction does not prescribe a state encoding, instead it returns a tuple of              
relevant data after each move has finished. The contents of the tuple are: 
 

● visual: an RGB array. 
● reward: the value of instantaneous reward resulting from the move that has            

just been executed. 
● playing: a value indicating whether the player is still ‘alive’. 
● clock: the number of seconds that remain in which the player must complete             

the level. 
● sound: None, an array of Mel-Frequency Cepstral Coefficients (MFCCs) or          

an array describing the raw audio output of the console. 
● duration_real: the amount of time the move took to complete. 
● duration_game: the amount of the player’s remaining time that the move           

took to complete, relative to the in-game clock. 
● score: the score that the player has achieved so far in the current episode. 

 
The RGB array is processed this way: 

 

5.Rewards 
RL needs a rewards system, which will lead the agent to desirable behaviour by              
adding numerical rewards to the action that an agent performs. In the end, the              
reward is just like a score number which will increase if the agent performs well. 
 
Any event that leads to a possible loss should be punished as undesired behaviour.              
In Kula World you can lose by falling off the edge of the platform, being ‘spiked’ by an                  
object in the game or running out of time. 
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For these reasons, the remaining amount of time is also considered by the agent in               
order to choose an action and avoiding it to lose time. If the time that remains from a                  
level is little, the agent will understand that moving will cost time too, and that way,                
the agent will end learning to use only the necessary moves. 
 
A function is specified for the reward system: “score_to_reward”, which will reward            
based on the amount of score an action done gives: coins give 250, collecting a key                
1000, … (see the table below for all the actions) 
 
Non-scoring action will be considered typically as a little negative score value and the              
sum of the rewards are limited in order to provide stability in learning. 

 

Reward function 

Event Score change Reward 

Coin collect +250 0.2 

Key collect +1000 0.4 

Fruit collect +2500 0.6 

Win level - +1 

Lose level - -1 
 

6.Evaluation 
The Kula-v1 Gym environment supports Kula World firsts 10 levels. It uses the             
console’s screen as its state encoding and (by default) uses the reward function             
described in table above, at section 5-Rewards. This environment was used with            
deepq and ppo2 from OpenAI Baselines. This approach to training is not particularly             
interesting, since the agent starts at the same situation in each episode. As a result,               
the agent simply learns how to beat that level in the shortest time with the highest                
score. In order to avoid this problem additional starting positions are created using             
the save state option. 
 
A simple DQN agent was implemented, for use with Kula-random-v1. The agents            
were trained on Level 1 of Kula World using a visual state encoding. The results are                
summarised in the graphs below. 

6 



 
 
The environment kula-random-v1 presents the agent with one of four different           
starting positions for the first three levels of the game, randomly selected. There is an               
extra starting point at level 2 that is reserved for use in validation episodes. We can                
see the starting points at the Figure below. 

 
On level 2, you have to make a decision, jump to another platform or not, doing it you                  
can obtain more coins, but trying it you can lose the game. The level 3 introduces you                 
to new physics that apparently are not intuitive to humans. Due to that, humans              
normally obtain better marks at the level 2. Instead, the agent was most successful in               
learning how to play level 3. On the next graph we can see the agent proficiency on                 
each level during training. 
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Another environment was developed using audio: Kula-audio-v1. The state encoding          
is the richest yet, containing visual output, audio output, time remaining on the level              
and score. MFCCs can be used in order to represent the audio output of a move. 
 
Finally, since the agent starts each episode from a specified state, the states in its               
memory are dominated by those that occur at the start of the level. For PlayStation               
games, which are usually quite complex and have long levels, this can result in              
lengthy training times. State replay is proposed as an alternative in which an agent              
can resume the game from a state which it has previously visited, allowing the agent               
to perform a different action. This can be trivially implemented using the save_state             
and load_state methods in PSXLE and could help to reduce the time required to              
learn complex games. No agents have been trained using this approach. 

7.Conclusions 
Two different algorithms of RL such as DeepQ and PPO2 from the OpenAI baselines              
show that they perform vastly differently in Kula World. This approach can be used              
with any other game as the design of PSXLE simplifies the build of abstraction which               
supports interfaces such as OpenAI Gym and therefore we could say that games can              
become optimal environments in which RL algorithms effectiveness can be evaluated           
and where new environments can be built in the future, with more complex and richer               
state spaces. 
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