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1 Contextualization

The purpouse of this paper is to explain how agents can perform actions in Minecraft using

reinforcement learning algorithms.

1.1 What is Minecraft?

Minecraft is a sandbox video game 1 developed by Mojang Studios. In Minecraft, players

explore a blocky, procedurally-generated 3D world with infinite terrain, and may discover and

extract raw materials, craft tools and items, and build structures or earthworks. Depending

on game mode, players can fight computer-controlled “mobs” 2, as well as cooperate with or

compete against other players in the same world. Game modes include a survival mode, in

which players must acquire resources to build the world and maintain health, and a creative

mode, where players have unlimited resources. Players can modify the game to create new

gameplay mechanics, items, and assets.

Figure 1: Minecraft Logo.

1Sandbox games are often associated with open world concepts which gives the player freedom of movement
and progression in the game’s world.

2A mob, short for mobile, is a computer-controlled non-player character (NPC) in a computer game.
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1.2 Reinforcement Learning (RL)

In a nutshell, RL is the study of agents and how they learn by trial and error. It formalizes the

idea that rewarding or punishing an agent for its behavior makes it more likely to repeat or

forego that behavior in the future.

Figure 2: The standard reinforcement learning model.

1.3 MarlÖ

MarlÖ is an API built on top of Project MalmÖ made by Microsoft. MalMÖ, for his part, is

a platform to experiment and research with Artifical Intelligence which is built on top of

Minecraft. As a result, it can communicate directly with Java Minecraft and that’s how the

program manages to control the Minecraft player. Malmo’s APIs gives the possibility to access

actions, observations (i.e. location, surroundings, video frames, game statistics) and other

data that Minecraft provides. These data is then used to build more friendly and higher level

APIs, such as the ones used at the previously mentioned MarlÖ and MineRL.

4

https://github.com/Microsoft/malmo/


ATAI

1.4 MineRL

MineRL, the brainchild of a team of researchers from Carnegie Mellon University, tackles an

ambitious problem facing the machine learning community: an increasing demand for large

amounts of computational resources to replicate state-of-the-art research.

In short MineRL consists of several major components:

• MineRL-v0 Dataset - One of the largest imitation learning datasets with over 60 million

frames of recorded human player data. The dataset includes a set of environments

which highlight many of the hardest problems in modern-day Reinforcement Learning:

sparse rewards and hierarchical policies.

• minerl - A rich python3 package for doing artificial intelligence research in Minecraft.

This includes two major submodules.

– minerl.env - A growing set of OpenAI Gym environments in Minecraft. These

environments leverage a synchronous, stable, and fast fork of Microsoft Malmo

called MineRLEnv.

– minerl.data - The main python module for ext with the MineRL-v0 datase.

1.4.1 MineRL 2020

MineRL 2020 is the fourth competition based on Project Malmo, an experimentation platform

using Minecraft to advance AI.

In the competition, participants develop a system to obtain a diamond in Minecraft us-

ing only four days of training time. A key challenge in making competitions more accessible

to people with different levels of interest, expertise, and resource access is the preparation of

a good set of baselines they can use to ramp up the task and environment and leverage in

their solutions.

The company’s intensive work resulted in an extensive set of excellent baselines, which uti-

lized its deep learning framework Chainer and included behavioral cloning, Deep Q-learning

from Demonstrations (DQfD), Rainbow, and proximal policy optimization (PPO).
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2 Reinforcement Learning

The main characters of Reinforcement Learning are the agent and the environment. The

environment is the world that the agent lives in and interacts with. At every step of interaction,

the agent sees a (possibly partial) observation of the state of the world, and then decides on

an action to take. The environment changes when the agent acts on it, but may also change

on its own.

The agent also perceives a reward signal from the environment, a number that tells it how

good or bad the current world state is. The goal of the agent is to maximize its cumulative

reward, called return. Reinforcement learning methods are ways that the agent can learn

behaviors to achieve its goal.

2.1 States and observations

A state (denoted as s) is a complete description of the state of the world. There is no infor-

mation about the world which is hidden from the state. An observation (denoted as o) is a

partial description of a state, which may omit information.

States and observations are almost always represented by a real-valued vector, matrix, or

higher-order tensor. For instance, a visual observation could be represented by the RGB

matrix of its pixel values. The MineRLTreechop-v0 environment’s observation space is as

follows:

Dict({

"pov": "Box(low=0, high=255, shape=(64, 64, 3))"

})

pov holds a 64x64x3 sized matrix, containing the RGB value of each pixel on the 64x64

window the agent sees.

2.2 Action spaces

Different environments allow different kinds of actions. The set of all valid actions in a given

environment is often called the action space.

Some environments have discrete action spaces, where only a finite number of moves are
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available to the agent, whereas other environments have continuous action spaces in which

actions are real-valued tensors.

2.3 Policies

A policy is a rule used by an agent to decide what actions to take. It can be deterministic.

at =µ(st )

Or it may be stochastic.

at ∼π(·|st )

2.4 Trajectories

A trajectory τ is a sequence of states and actions in the world.

τ= (s0, a0, s1, a1, . . .)

The very first state of the world, s0, is randomly sampled from the start-state distribution,

sometimes denoted by ρ0:

s0 ∼ ρ0(·)

State transitions (what happens to the world between the state at time t , st , and the state at

t +1, st+1), are governed by the natural laws of the environment, and depend on only the

most recent action, at . They can be deterministic

st+1 = f (st , at )

or stochastic.

st+1 ∼ P (·|st , at )

Actions come from an agent according to its policy. Trajectories are also frequently called

episodes.
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2.5 Reward and return

The reward function R is critically important in reinforcement learning. It depends on the

current state of the world, the action just taken, and the next state of the world:

rt = R(st , at , st+1)

One kind of return is the finite-horizon undiscounted return, which is just the sum of rewards

obtained in a fixed window of steps:

R(τ) =
T∑

t=0
rt

Another kind of return is the infinite-horizon discounted return, which is the sum of all rewards

ever obtained by the agent, but discounted by how far off in the future they’re obtained. This

formulation of reward includes a discount factor γ ∈ (0,1):

R(τ) =
∞∑

t=0
γt rt

An infinite-horizon sum of rewards may not converge to a finite value, but with a discount

factor and under reasonable conditions, the infinite sum converges.

2.6 Reinforcement Learning problem

The goal in RL is to select a policy which maximizes expected return when the agent acts

according to it. Let’s suppose that both the environment transitions and the policy are

stochastic. In this case, the probability of a T -step trajectory is:

P (τ|π) = ρ0(s0)
T−1∏
t=0

P (st+1|st , at )π(at |st )

The expected return (for whichever measure), denoted by J (π), is then:

J (π) =
∫
τ

P (τ|π)R(τ) = E
τ∼π[R(τ)]

The central optimization problem in RL can then be expressed as finding the optimal policy

π∗ as:

π∗ = ar g max
π

J (π)
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3 Environments

The agents can achieve multiple objectives. For each objective, a different environment will

be loaded into Minecraft. The environment will have specific objects and terrains in order to

make the agent objectives achievable.

Besides, an XML file can be created specifying environment attributes, for example, where

the agent will be loaded. Rewards can be set as well, positive points mainly to the mission

we want the agent to complete whereas negative points are given to actions that won’t help

succeding, such as dying. The documentation related the XML Schema can be found here.

3.1 MarlÖ

In the case of MarlÖ, the agents can be trained to achieve missions based on the following

environments:

• MarLo-MazeRunner-v0: the environment is formed by flat purple material with white

cubes. The agent should follow the cubes to arrive to the final point of the maze.

• MarLo-CliffWalking-v0: there is some lava in the lava as well as some safe terrain. The

agent should arrive to destination withour falling in the lava.

• MarLo-CatchTheMob-v0: the environment has some obstacles and a mob. The agent

will try to catch the mob.

• MarLo-FindTheGoal-v0: it is a closed room with a yellow cube. The agent will try to

find it.

• MarLo-Attic-v0: the agent should arrrive to the goal which is at the top of the loaded

map. In order to do that, it must learn go up jumping.

• MarLo-DefaultFlatWorld-v0: there is a building in a flat world, and the agent objective

will be entering inside.

• MarLo-DefaultWorld-v0: the Minecraft default game wolrd will be loaded. In this

mode agents can be trained to perform whatever actions desired by the programmer.

• MarLo-Eating-v0: this environment has a flat floor with some food items on it. The

agent should collect the items as fast as possible.
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• MarLo-Obstacles-v0: It is the same environment as MarLo-FindTheGoal-v0, but in this

case the building is bigger, with the possibility of having more rooms and obstacles.

• MarLo-TrickyArena-v0: the floor is made by a variety of materials. The agent should

find the specified material.

• MarLo-Vertical-v0: it is the same environment as MarLo-FindTheGoal-v0, but the goal

is in a room above the loaded room. The difference with MarLo-Attic-v0 is that in this

case, in order to go up there are some stairs.

3.2 MineRL

The MineRL framework also offer some environments at which agents can be trained to

perform some actions and complete objectives, such as the following:

• MineRLTreechop-v0: the agent must collect 64 minercaft:log. The agent begins in a

forest biome (near many trees) with an iron axe for cutting trees.

• MineRLNavigate-v0: in this task, the agent must move to a goal location denoted by a

diamond block. The agent must find the final goal by searching based on local visual

features. This variant of the environment is sparse. In this environment, the agent

spawns on a random survival map.

• MineRLNavigateExtreme-v0: this task’s goal is the same as in the MineRLNavigate-v0,

but in this environment the agent spawns in an extreme hills biome.

• MineRLNavigateDense-v0: this task’s goal is the same as in the MineRLNavigate-v0,

but this variant of the environment is dense reward-shaped where the agent is given a

reward every tick for how much closer (or negative reward for farther) the agent gets to

the target.

• MineRLNavigateExtremeDense-v0:this task is the same as the MineRLNavigateDense-

v0, but in this environment the agent spawns in an extreme hills biome.

• MineRLObtainDiamond-v0: in this environment the agent is required to obtain a

diamond. The agent begins in a random starting location, on a random survival map,

without any items. This variant of the environment is sparse.

• MineRLObtainDiamondDense-v0: this task’s goal is the same as in ObtainDiamond,

but this variant of the environment is dense reward-shaped where the agent is given a
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reward every tick for how much closer (or negative reward for farther) the agent gets to

the target.

• MineRLObtainIronPickaxe-v0: in this environment the agent is required to obtain an

iron pickaxe. The agent begins in a random starting location, on a random survival

map, without any items. This variant of the environment is sparse.

• MineRLObtainIronPickaxeDense-v0: this task’s goal is the same as in ObtainIronPick-

axe, but this variant of the environment is dense reward-shaped where the agent is

given a reward every tick for how much closer (or negative reward for farther) the agent

gets to the target.
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4 Installation and usage

4.1 MarLÖ

The process to install MarlÖ is the following:

1 conda create python=3.6 --name marlo

2 conda config --add channels conda-forge

3 conda activate marlo

4 conda install -c crowdai malmo

5 pip install -U marlo

All the dependencies needed will also be installed. However, the user does not have to have

the Minecraft game (Java version) purchased and installed in order to proceed, because

Microsoft made a development adaptation of the game for the purpose of Project Malmo.

4.1.1 Launch Minecraft Client

$MALMO_MINECRAFT_ROOT/launchClient.sh -port 10000

It will launch the Minecraft game

4.1.2 Create the environment

We set the environment we want. More than one agent can be created as well, using

client_pool variable.

1 import marlo

2 client_pool = [('127.0.0.1', 10000)]

3 join_tokens = marlo.make('MarLo-MazeRunner-v0',

4 params={

5 "client_pool": client_pool,

6 "agent_names" : ["MarLo-Agent-0"]

7 })

8 assert len(join_tokens) == 1

9 env = marlo.init(join_tokens[0])

10 env.reset()

4.1.3 Start the game loop

1 done = False

2

3 while not done:

12
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4 _action = env.action_space.sample()

5 obs, reward, done, info = env.step(_action)

6

7 env.close()

In this code above, no reinforcement learning is happening. The code above only samples

randomly an action from all the actions available in the environment and performs it. For

each action, we get the observation of the agent as well as the reward quantity gotten for

performing the action and if the agent finished the objective.

In order to implement a Reinforcement Learning, instead of randomly sampling the ac-

tion space, the idea would be to perform some kind of policy optimization method.

4.2 MineRL

MineRL is included in the pip python repository, so it is as easy to install as one command:

pip install minerl gym

4.2.1 Download and building datasets

MineRL is composed of two main components, which are the data and the environments.

The data consists of around 65 GB of collected from client side re-simulated Minecraft demon-

stration data.

In order to download that data, the following command should be run:

$MINERL_DATA_ROOT="your/local/path" python3 -m minerl.data.download

Once the data has been downloaded, MineRL offers a way of easily building a dataset, as

described by the following code piece:

1 data = minerl.data.make(MineRLObtainDiamond-v0')

2

3 for current_state, action, reward, next_state, done \

4 in data.batch_iter(batch_size=1, num_epochs=1, seq_len=32):

5

6 # Print the POV @ the first step of the sequence

7 print(current_state['pov'][0])

13
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8 # Print the final reward of the sequence!

9 print(reward[-1])

10 # Check if final (next_state) is terminal.

11 print(done[-1])

12 #Do something with the data!!

4.2.2 Creating an agent

Creating an agent in MineRL is the same as creating an agent on a gym-like environment, so

that means that the code for creating and taking actions on an agent is very similar as the

explained in MarLÖ section. The following piece of code creates an agent in MineRL which

just goes forward jumping and attacking, as an example of the simplicity of usage:

1 import minerl

2 import gym

3 env = gym.make('MineRLNavigateDense-v0')

4

5

6 obs = env.reset()

7 done = False

8 net_reward = 0

9

10 while not done:

11 action = env.action_space.noop()

12

13 action['camera'] = [0, 0.03*obs["compassAngle"]]

14 action['back'] = 0

15 action['forward'] = 1

16 action['jump'] = 1

17 action['attack'] = 1

18

19 obs, reward, done, info = env.step(

20 action)

21

22 net_reward += reward

23 print("Total reward: ", net_reward)

14
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5 Conclusions

We have drown two clear conclusions from all this research:

• It is a good approach to understand and dive into Reinforcement Learning, as one

can understand it and prove the algorithms themselves in a game that is played by

millions of people around the world. These kind of frameworks narrow the gap Machine

Learning experts and unexpert users, allowing them to acquire knowledge from this

Artificial Inteligence area in a more atractive way.

• There is not much documentation on MarlÖ or even the environments related to it.

This is mostly because MarLÖ was designed to help people to participate in a certain

competition. The people attending the competition were supposed to already have

some knowledge about Reinforcement Learning methods. As the tool was designed

for that use case, there is not much code available, because the code written by the

participants is private so that no other team can use the same techniques. The most

useful documentation that can be found for that tool is the frameworks source code

itself.
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