
Upside Down
Reinforcement Learning

Iván Hidalgo
Gorka Arrausi

Iñigo Rojo

Index
● Introduction
● Theory
● Practise
● Conclusion

2

Introduction

3

4

We are presenting the
technical report of Jürgen
Schmidhuber on the topic of
upside down reinforcement
learning presented in the 5th of
december of 2019, which was
presented days latter at the
NeurIPS, the conference in
neural Information Processing
Systems held annually.

When was created?

5

- Simple concept

- An agent interacts with actions

- The environment answers with a new
state and a reward.

- The agent uses the feedback

Reinforcement Learning

Theory

6

- Reinforced Supervised
 Learning Learning

- Desired reward + state of the
environment as input

- Predicts needed actions

7

8

- Desired reward as input and predicted action as output

- Desired return + desired number of timesteps(horizon) + state of the environment Predicted
best action

- In short it manages to learn by interacting with the environment using gradient descent to map
self-generated commands to corresponding action probabilities with the possibility of using this
acquired knowledge to solve new problems.

Upside Down Reinforcement Learning

● An agent may interact with its environment throughout a single prolonged period of time. At a given
time, the history of actions and vector-valued costs like time, energy, pain and reward signals,etc
will contain all the agent can know about the present state of itself and the environment. Its task
then will be to obtain a lot of reward before some period of time elapses.

● For all past sub periods of time it can evaluate and implement additional, consistent, vector-valued
command inputs for itself trying to achieve similar reward with less cost or to try to surpass that
possible reward that happened in the past.

● It's possible now to use the gradient based supervised learning to assign our computer to map
sensory inputs alongside our desired commands of rewards and the timeframe(horizons) to the
known action sequences. If we find different but equally costly actions between our starting point
and towards some goal we can train our computer to approximate the expected value of the
appropriate actions.

9

Through our single long period of time our algorithm will learn to solve problems where there are logistical
constraints of costs.

With this done we should be able to define commands of our own specific to problems affecting the user
and hopefully our trained computer will be able to generalize based on what it has learned. This will not
only help our problems, but also increase the experience of the computer which is ultimately what
machine learning means: To learn from experience with respect to some task as measured by some
method and to improve this performance as the experience grows.

10

Practice

11

12

Difference between RL and UDRL

Action-value function
(Q) in traditional RL

Behavior function
(B) in UDRL

How do commands work?

13

LunarLander - working environment

14

LunarLander - working environment

15

Settings and results of LunarLander

16

This was the first set up:
- All agents were implemented using Artificial

NN.
- The behaviour function of UDRL has been

implemented with Fully-Connected
Feed-Forward Networks.

- The command inputs suffered a small
modification.

Then 20 seeds were used for each environment
and algorithm and were sampled like this:

- [1M, 10M) for training.
- [0.5M, 1M) for evaluation during

hyperparameters tuning.
- [1, 0.5M) for final evaluation with best

hyperparameters.

Settings and results of LunarLander

17

With a simple change
in reward structure

Conclusion

18

To summarize, upside down reinforced learning bring us a new tool that while it's
no miracle, not working better in every scenario, for some concrete tasks where
reinforced learning doesn't yield very good results this bridge between supervised
learning and reinforced learning might do the trick.

19

Thanks for your attention

20

