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We are presenting the 
technical report of Jürgen 
Schmidhuber on the topic of 
upside down reinforcement 
learning presented in the 5th of 
december of 2019, which was 
presented days latter at the 
NeurIPS, the conference in 
neural Information Processing 
Systems held annually.

When was created?
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- Simple concept

- An agent interacts with actions

- The environment answers with a new 
state and a reward.

- The agent uses the feedback

Reinforcement Learning



Theory
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- Reinforced Supervised
  Learning    Learning

- Desired reward + state of the 
environment  as input

- Predicts needed actions  
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- Desired reward as input and predicted action as output

- Desired return + desired number of timesteps(horizon) + state of the environment    Predicted 
best action

- In short it manages to learn by interacting with the environment using gradient descent to map 
self-generated commands  to corresponding action probabilities with the possibility of using this 
acquired knowledge to solve new problems.

Upside Down Reinforcement Learning



● An agent may interact with its environment throughout a single prolonged  period of time. At a given 
time, the history of actions and vector-valued costs like time, energy, pain and reward signals,etc  
will contain all the agent can know about the present state of itself and the environment. Its task 
then will be to obtain a lot of reward before some period of time elapses.

● For all past sub periods of time it can evaluate and implement additional, consistent, vector-valued 
command inputs for itself trying to achieve similar reward with less cost or to try to surpass that 
possible reward that happened in the past.

● It's possible now to use the gradient based supervised learning to assign our computer to map 
sensory inputs alongside our desired commands of rewards and the timeframe(horizons) to the 
known action sequences. If we find different but equally costly actions between our starting point 
and towards some goal we can train our computer to approximate the expected value of the 
appropriate actions. 
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Through our single long period of time our algorithm will learn to solve problems where there are logistical 
constraints of costs. 

With this done we should be able to define commands of our own specific to problems affecting the user 
and hopefully our trained computer will be able to generalize based on what it has learned. This will not 
only help our problems, but also increase the experience of the computer which is ultimately what 
machine learning means: To learn from experience with respect to some task as measured by some 
method and to improve this performance as the experience grows.
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Practice
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Difference between RL and UDRL

Action-value function 
(Q) in traditional RL

Behavior function 
(B) in UDRL



How do commands work?
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LunarLander - working environment
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LunarLander - working environment
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Settings and results of LunarLander
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This was the first set up:
- All agents were implemented using Artificial 

NN.
- The behaviour function of UDRL has been 

implemented with Fully-Connected 
Feed-Forward Networks. 

- The command inputs suffered a small 
modification.

Then 20 seeds were used for each environment 
and algorithm and were sampled like this:

- [1M, 10M) for training.
- [0.5M, 1M) for evaluation during 

hyperparameters tuning.
- [1, 0.5M) for final evaluation with best 

hyperparameters.



Settings and results of LunarLander
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With a simple change 
in reward structure 



Conclusion
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To summarize, upside down reinforced learning bring us a new tool that while it's 
no miracle, not working better in every scenario, for some concrete tasks where 
reinforced learning doesn't yield very good results this bridge between supervised 
learning and reinforced learning might do the trick.
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Thanks for your attention
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