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Introduction 
 
 
In this report we are presenting the technical report of Jürgen Schmidhuber on the 
topic of upside down reinforcement learning presented in the 5th of december of 
2009. This new technique is a spin on the classical reinforced learning algorithms, by 
turning the problem into one of supervised learning allowing the agent to learn to 
decide actions receiving a desired reward and the observation of the environment as 
a base instead of the usual prediction of rewards and actions decided based on that 
prediction that traditional reinforced learning employs.  
 
This new model of machine learning is very useful as it was thought to be impossible 
to fully solve the problems of reinforced learning with supervised learning, as the 
agent would receive feedback on the usefulness of an action, not the optimal way to 
solve it creating errors within a learned dataset. 
 
To finish this introduction one of the main results of this report is presented, a way to 
train agents in general model free settings without using value based algorithms like 
Q-learning (in which a markov decision process can find optimal policies maximizing 
the value of the total reward over any successive steps, starting on the current one). 
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Theory 
 
 
To  understand Upside Down Reinforcement Learning(UDRL) we must first explain 
the concept of Reinforcement Learning(RL).  
The concept is pretty simple, an agent who interacts with his environment through 
different actions. When the agent performs an action, the environment answers with 
a new state and with a reward that the agent is gonna use as a feedback to the 
performed action. With this feedback the agent can learn if doing that is a good idea 
or a bad idea, putting the agent on the right way to achieve his objective. 
 
In normal RL the actions are used as inputs to calculate the output value(the 
reward), but in Upside Down Reinforcement Learning the desired reward is used  as 
the input and the action to achieve that input is obtained as output.  
So, we have a desired return(the reward) that we want in a maximum number of 
timesteps(the horizon), and we use it as input along with the actual state of the 
environment to predict, using the behavior function, what is the best action to take at 
that moment. 
 
In short it manages to learn by interacting with the environment using 
gradient descent to map self-generated commands  to corresponding action 
probabilities with the possibility of using this acquired knowledge to solve new 
problems. 
 
An agent may interact with its environment throughout a single prolonged  period of 
time. At a given time, the history of actions and vector-valued costs like time, energy, 
pain and reward signals,etc  will contain all the agent can know about the present 
state of itself and the environment. Its task then will be to obtain a lot of reward 
before some period of time elapses. For all past periods of time it can evaluate and 
implement additional, consistent, vector-valued command inputs for itself trying to 
achieve similar reward with less cost or to try to surpass that possible reward that 
happened in the past. It's possible now to use the gradient based supervised 
learning to assign our computer to map sensory inputs alongside our desired 
commands of rewards and the timeframe(horizons) to the known action sequences. 
If we find different but equally costly actions between our starting point and towards 
some goal we can train our computer to approximate the expected value of the 
appropriate actions.  
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Through our single long periods of time our algorithm will learn to solve problems 
where there are logistical constraints of costs.  
 
With this done we should be able to define commands of our own specific to 
problems affecting the user and hopefully our trained computer will be able to 
generalize based on what it has learned. This will not only help our problems, but 
also increase the experience of the computer which is ultimately what machine 
learning means: To learn from experience with respect to some task as measured by 
some method and to improve this performance as the experience grows. 
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Practice 
This section is based in the second paper about UDRL [2], in this paper they explain                
how this new technique works in some agents and the results of the experiments              
they had made. 
  
First of all we have to understand in a more visual way how does UDRL works and 
what is the difference with traditional RL. This is the image that explains it: 
 

 
The left function shows how the traditional RL works (in this case with Q-learning),              
as it has been explained before it receives an observation like the actual state and               
an action to make. Then with the value function Q we receive an output value, the                
reward. 
The right function shows how the UDRL works (with a behaviour function). In this              
case the action is the output (the roles have been changed compared with traditional              
RL) and the inputs also have changed. The observation has not changed, but the              
command is a new input. This command contains the desired return (the desired             
reward) and the desired horizon (in how many steps do you want to obtain that               
reward). At first this may sound strange, with the next example explained in the              
paper it will be easier to understand. 
 
Imagine the next situation, with s​0 or ​s​1 ​as initial states of the trajectories and s​2 ​or s​3                  
as final states. The table of the right has the possible commands we can pass to the                 
Behavior funcion, with its desired return and horizon.  
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We will explain a bit what is in the table to understand what it means or represents                 
each attribute. For example, if we are in state s​0​ we can have three situation: 
 

- “I want to obtain a reward = 2 in just 1 step”, in this case the table will tell that                    
the action that has to be made is a​1 (and that will be the output it will give).                  
This will be its representation in the graph: 

 
- “I want to obtain a reward = 1 in just 1 step”, in this case the table will tell that                    

the action that has to be made is a​2 (and that will be the output it will give).                  
This will be its representation in the graph: 

 
- “I want to obtain a reward = 1 in 2 step”. This case is diferent because we                 

have 2 steps, but it can only give the action for the first step; the next action is                  
not important now, it will have to be decided later. That is why in this case the                 
table will tell that the action that has to be made is a​1 (and that will be the                  
output it will give). It decides a​1 because then it will decide a​2 , doing this the                 
reward will be what we wanted: r​t = r​1 + r​2 = 2 + (-1) = 1. This will be its                     
representation in the graph: 

 
In the paper, they use two environments to show how UDRL works: LunarLander-v2             
and TakeCover-v0. But I will only talk about LunarLander because I think its results              
are more interestings.  
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LunarLander is a Markovian environment where the objective is to land a spacecraft             
between two flags only using 3 engines (one in each side and another one in the                
bottom of the spacecraft). It is used as a AI Gym and is available in the Gym RL                  
library. This is an image of LunarLander: 

 
In LunarLander-v2 at the end of the episode there is a reward of +100 for landing 
well and -100 if not. But in this first environment during the episode, in each step 
there are also rewards to ensure that it is getting to the landing position.  
This was the first set up: 

- All agents were implemented using Artificial NN. 
- The behaviour function of UDRL has been implemented with Fully-Connected 

Feed-Forward Networks.  
- The command inputs suffered a small modification. 

Then 20 seeds were used for each environment and algorithm and were sampled 
like this: 

- [1M, 10M) for training 
- [0.5M, 1M) for evaluation during hyperparameters tuning 
- [1, 0.5M) for final evaluation with best hyperparameters 

 
*These were the hyperparameters: 
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In this case as you can see in the next graphic, UDRL has not gone very well. It does 
not do so bad, some of the agents learn quickly to land successfully like A2Q and 
DQN,  but there are other agents who do not. 
 

 
 

Then they changed a bit the Reward Structure. Now, all rewards were accumulated 
until the end of each episode and they were given to the agent at the last time step; 
to make this the rewards in other time steps were zero. The results of the las 20 runs 
are in the next graphic: 
 
 

 
This change made UDRL much better than the other two, because they were having 
trouble with the delayed rewards and also with sparse rewards. But UDRL has been 
capable to train agents with both sparse and dense rewards; but sometimes sparse 
rewards worked better than dense depending on the environment. 
It is curious how the same task but with different Rewards Structures the results can 
change so much and this is a thing to have into account. 
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