

Upside Down

Reinforcement Learning
(UDRL)

Iván Hidalgo
Gorka Arrausi

Iñigo Rojo

Upside Down Reinforcement Learning ATAI 2020-2021

Index

Introduction 2

Theory 3

Practice 5

Bibliography 9

1

Upside Down Reinforcement Learning ATAI 2020-2021

Introduction

In this report we are presenting the technical report of Jürgen Schmidhuber on the
topic of upside down reinforcement learning presented in the 5th of december of
2009. This new technique is a spin on the classical reinforced learning algorithms, by
turning the problem into one of supervised learning allowing the agent to learn to
decide actions receiving a desired reward and the observation of the environment as
a base instead of the usual prediction of rewards and actions decided based on that
prediction that traditional reinforced learning employs.

This new model of machine learning is very useful as it was thought to be impossible
to fully solve the problems of reinforced learning with supervised learning, as the
agent would receive feedback on the usefulness of an action, not the optimal way to
solve it creating errors within a learned dataset.

To finish this introduction one of the main results of this report is presented, a way to
train agents in general model free settings without using value based algorithms like
Q-learning (in which a markov decision process can find optimal policies maximizing
the value of the total reward over any successive steps, starting on the current one).

2

Upside Down Reinforcement Learning ATAI 2020-2021

Theory

To understand Upside Down Reinforcement Learning(UDRL) we must first explain
the concept of Reinforcement Learning(RL).
The concept is pretty simple, an agent who interacts with his environment through
different actions. When the agent performs an action, the environment answers with
a new state and with a reward that the agent is gonna use as a feedback to the
performed action. With this feedback the agent can learn if doing that is a good idea
or a bad idea, putting the agent on the right way to achieve his objective.

In normal RL the actions are used as inputs to calculate the output value(the
reward), but in Upside Down Reinforcement Learning the desired reward is used as
the input and the action to achieve that input is obtained as output.
So, we have a desired return(the reward) that we want in a maximum number of
timesteps(the horizon), and we use it as input along with the actual state of the
environment to predict, using the behavior function, what is the best action to take at
that moment.

In short it manages to learn by interacting with the environment using
gradient descent to map self-generated commands to corresponding action
probabilities with the possibility of using this acquired knowledge to solve new
problems.

An agent may interact with its environment throughout a single prolonged period of
time. At a given time, the history of actions and vector-valued costs like time, energy,
pain and reward signals,etc will contain all the agent can know about the present
state of itself and the environment. Its task then will be to obtain a lot of reward
before some period of time elapses. For all past periods of time it can evaluate and
implement additional, consistent, vector-valued command inputs for itself trying to
achieve similar reward with less cost or to try to surpass that possible reward that
happened in the past. It's possible now to use the gradient based supervised
learning to assign our computer to map sensory inputs alongside our desired
commands of rewards and the timeframe(horizons) to the known action sequences.
If we find different but equally costly actions between our starting point and towards
some goal we can train our computer to approximate the expected value of the
appropriate actions.

3

Upside Down Reinforcement Learning ATAI 2020-2021

Through our single long periods of time our algorithm will learn to solve problems
where there are logistical constraints of costs.

With this done we should be able to define commands of our own specific to
problems affecting the user and hopefully our trained computer will be able to
generalize based on what it has learned. This will not only help our problems, but
also increase the experience of the computer which is ultimately what machine
learning means: To learn from experience with respect to some task as measured by
some method and to improve this performance as the experience grows.

4

Upside Down Reinforcement Learning ATAI 2020-2021

Practice
This section is based in the second paper about UDRL [2], in this paper they explain
how this new technique works in some agents and the results of the experiments
they had made.

First of all we have to understand in a more visual way how does UDRL works and
what is the difference with traditional RL. This is the image that explains it:

The left function shows how the traditional RL works (in this case with Q-learning),
as it has been explained before it receives an observation like the actual state and
an action to make. Then with the value function Q we receive an output value, the
reward.
The right function shows how the UDRL works (with a behaviour function). In this
case the action is the output (the roles have been changed compared with traditional
RL) and the inputs also have changed. The observation has not changed, but the
command is a new input. This command contains the desired return (the desired
reward) and the desired horizon (in how many steps do you want to obtain that
reward). At first this may sound strange, with the next example explained in the
paper it will be easier to understand.

Imagine the next situation, with s​0 or ​s​1 ​as initial states of the trajectories and s​2 ​or s​3
as final states. The table of the right has the possible commands we can pass to the
Behavior funcion, with its desired return and horizon.

5

Upside Down Reinforcement Learning ATAI 2020-2021

We will explain a bit what is in the table to understand what it means or represents
each attribute. For example, if we are in state s​0​ we can have three situation:

- “I want to obtain a reward = 2 in just 1 step”, in this case the table will tell that
the action that has to be made is a​1 (and that will be the output it will give).
This will be its representation in the graph:

- “I want to obtain a reward = 1 in just 1 step”, in this case the table will tell that

the action that has to be made is a​2 (and that will be the output it will give).
This will be its representation in the graph:

- “I want to obtain a reward = 1 in 2 step”. This case is diferent because we

have 2 steps, but it can only give the action for the first step; the next action is
not important now, it will have to be decided later. That is why in this case the
table will tell that the action that has to be made is a​1 (and that will be the
output it will give). It decides a​1 because then it will decide a​2 , doing this the
reward will be what we wanted: r​t = r​1 + r​2 = 2 + (-1) = 1. This will be its
representation in the graph:

In the paper, they use two environments to show how UDRL works: LunarLander-v2
and TakeCover-v0. But I will only talk about LunarLander because I think its results
are more interestings.

6

Upside Down Reinforcement Learning ATAI 2020-2021

LunarLander is a Markovian environment where the objective is to land a spacecraft
between two flags only using 3 engines (one in each side and another one in the
bottom of the spacecraft). It is used as a AI Gym and is available in the Gym RL
library. This is an image of LunarLander:

In LunarLander-v2 at the end of the episode there is a reward of +100 for landing
well and -100 if not. But in this first environment during the episode, in each step
there are also rewards to ensure that it is getting to the landing position.
This was the first set up:

- All agents were implemented using Artificial NN.
- The behaviour function of UDRL has been implemented with Fully-Connected

Feed-Forward Networks.
- The command inputs suffered a small modification.

Then 20 seeds were used for each environment and algorithm and were sampled
like this:

- [1M, 10M) for training
- [0.5M, 1M) for evaluation during hyperparameters tuning
- [1, 0.5M) for final evaluation with best hyperparameters

*These were the hyperparameters:

7

Upside Down Reinforcement Learning ATAI 2020-2021

In this case as you can see in the next graphic, UDRL has not gone very well. It does
not do so bad, some of the agents learn quickly to land successfully like A2Q and
DQN, but there are other agents who do not.

Then they changed a bit the Reward Structure. Now, all rewards were accumulated
until the end of each episode and they were given to the agent at the last time step;
to make this the rewards in other time steps were zero. The results of the las 20 runs
are in the next graphic:

This change made UDRL much better than the other two, because they were having
trouble with the delayed rewards and also with sparse rewards. But UDRL has been
capable to train agents with both sparse and dense rewards; but sometimes sparse
rewards worked better than dense depending on the environment.
It is curious how the same task but with different Rewards Structures the results can
change so much and this is a thing to have into account.

8

Upside Down Reinforcement Learning ATAI 2020-2021

Bibliography

[1] ​Paper - Reinforcement Learning Upside Down: Don't Predict Rewards -- Just Map
Them to Actions

[2] ​Paper - Training Agents using Upside-Down Reinforcement Learning

[3] ​Blog - Demystifying Upside-Down Reinforcement Learning

[4] ​Blog - Is Upside-Down Reinforcement Learning = Imitation Learning?

[5] ​YouTube - Reinforcement Learning Upside Down: Don't Predict Rewards -- Just
Map Them to Actions

[6] ​YouTube - Upside-Down Reinforcement Learning

9

https://arxiv.org/abs/1912.02875
https://arxiv.org/abs/1912.02875
https://arxiv.org/abs/1912.02877
https://medium.com/@jscriptcoder/demystifying-upside-down-reinforcement-learning-a-k-a-%EA%93%A4-b7bd4214b33f
https://towardsdatascience.com/is-upside-down-reinforcement-learning-imitation-learning-4a9d346f9f98
https://www.youtube.com/watch?v=RrvC8YW0pT0
https://www.youtube.com/watch?v=RrvC8YW0pT0
https://www.youtube.com/watch?v=ed7QQMG24MM

