
INTERACTIVE FICTION GAMES: A Colossal Adventure

Arnaud le Doeuff Ignacio Dorado Jorge Orbegozo

*WHAT ARE INTERACTIVE FICTION (IF) GAMES?

Fully text-based simulation environments where a player issues text commands to effect change in the environment and progress through the story

West of House	Score: 0	Moves: 2
ZORK I: The Great Underground Empire Copyright (c) 1981, 1982, 1983 Infocom, Inc. All ZORK is a registered trademark of Infocom, Inc. Revision 88 / Serial number 840726	rights re	served.
West of House You are standing in an open field west of a white door. There is a small mailbox here.	e house, w	ith a boarded front
open mailbox opening the small mailbox reveals a leaflet.		
read leaflet (Taken) "WELCOME TO ZORK!		
ZORK is a game of adventure, danger, and low cun some of the most amazing territory ever seen by without one!"	ning. In i mortals. N	t you will explore o computer should be
>		

GOAL: test the efficiency of autonomous Reinforcement Learning agents playing IF games.

CHALLENGES:

Combinatorial Action Space

Decision making

+

Natural Language Processing

 $(700^4 = 240 \text{ billions})$

Commonsense Reasoning

Open the chest?

or

Eat the chest?

Knowledge Representation

Travel through the world

Keeping track of objects

Jericho

- Open source
- Infocom games
- More accessible for existing agents
- Point-based scoring sistem

Templates	Ob	jects	
	sword	sword	
	jewels	jewels	
turn on_	machine	machine	
open	case	case	
take	gothic	gothic	
push_	all	all	
takefrom	troll	troll	
east	lantern	lantern	
	grue	grue	
	door	door	

Algorithm 1 Procedure for Identifying Valid Actions

- 1: $\mathcal{E} \leftarrow$ Jericho environment
- 2: $\mathcal{T} \leftarrow \text{Set of action templates}$
- 3: $o \leftarrow$ Textual observation
- 4: $\mathcal{P} \leftarrow \{p_1 \dots p_n\}$ Interactive objects identified with noun-phrase extraction or world object tree.
- 5: $Y \leftarrow \emptyset$ List of valid actions
- 6: $s \leftarrow \mathcal{E}.save()$ Save current game state
- 7: for template $u \in \mathcal{T}$ do
 - for all combinations $p_1, p_2 \in \mathcal{P}$ do
- 9: Action $a \leftarrow u \Leftarrow p_1, p_2$
- 10: **if** $\mathcal{E}.world_changed(\mathcal{E}.step(a))$ **then**
- 1: $Y \leftarrow Y \cup a$
- 12: $\mathcal{E}.load(s)$ Restore saved game state

return Y

Handicaps:

- Fixed random seed
- 2. Load, Save
- 3. Game templates and vocabulary
- 4. World object tree representation
- 5. World change detection

Algorithms

DRRN:

- Choice-based
- Single-game
- Based valid actions
- Update sampling minibatch
- Uses Jericho's handicaps

TDQN:

- Parser-based
- Single-game
- Templete based
- Supervised binary cross entropy loss
- Uses Jericho's handicaps

NAIL:

- Parser-based
- General-game
- Manually heuristic
- Web-based to decide
- No handicaps

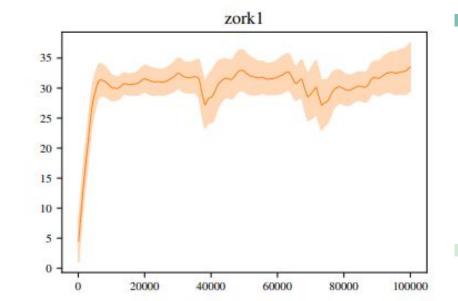
Experiments

Agents were **evaluated** across a set of <u>32 games</u>

Game	$ \mathcal{T} $	$ \mathcal{V} $	RAND	NAIL	TDQN	DRRN	MaxScore
905	82	296	0	0	0	0	1
acorncourt	151	343	0	0	1.6	10	30
advent [†]	189	786	36	36	36	36	350
adventureland	156	398	0	0	0	20.6	100
afflicted	146	762	0	0	1.3	2.6	75
anchor	260	2257	0	0	0	0	100
awaken	159	505	0	0	0	0	50
balances	156	452	0	10	4.8	10	51
deephome	173	760	1	13.3	1	1	300
detective	197	344	113.7	136.9	169	197.8	360

Results

Agent	RAND	NAIL	TDQN	DRRN
Completion rate (%)	1.8	4.9	6.1	10.7


Tree difficulty tiers:

- Possible games
- Difficult games
- Extreme games

Example with Zork1

- 5 runs of each algorithm

Agents result for Zork 1

Game	T	V	RAND	NAIL	TDQN	DRRN	Max Score
Zork 1	237	697	0	10.3	9.9	32.6	350

Conclusions

- The fact that DRRN, the choice-based agent, outperformed TQDN, shows the difficulty of language generation.
- DRRN and TDQN were trained and evaluated on individual games, still far from a truly general-purpose agent
- TDQN algorithm computes independent Q-values for words and templates, **conditional generation** is an improvement yet to be explored.

QUESTIONS?