

ATAI

Interactive Fiction
Games: A Colossal
Adventure
Homework 1

Arnaud Le Doeuff, Ignacio Dorado, Jorge Orbegozo
28/09/2020

ATAI – Homework 1

1

Table des matières
I. Introduction .. 2

II. Jericho ... 3

III. Algorithms ... 4

IV. Experiments ... 5

a. Results .. 5

b. Example with Zork1 ... 6

V. Conclusion ... 7

VI. References ... 8

VII. Appendices .. 9

ATAI – Homework 1

2

I. Introduction

Interactive fictions (IF), or text-adventures, are games in which a player interacts

with a world entirely through textual descriptions and text commands. These

games are typically structured as puzzles or quests where a player observes

textual descriptions of a simulated world, executes an action inputting a natural

language command and gets a change in the world as a reward to progress in

the game.

The goal is to test the efficiency of autonomous Reinforcement Learning agents

playing IF games. This problem does not only involve sequential decision

making, but also natural language processing. Before we go deeper into the

chosen approach, we present the main challenges to face.

Reinforcement Learning algorithms suit really well sequential decision making

problems but are not usually used for text-based tasks, which makes the action

space grow at a combinatorial range. A 7 word sentence using a vocabulary size

of 700 can be formed in 7004 (240 billion) different sentences, which is not a

feasible exploring space. Also, the game may only recognise half of those

sentences, and, out of them, only a few will make a change in the environment.

IF games are meant to be played using commonsense reasoning, humans know

how to interact with their environment and have the knowledge to pair the right

verb with the right object in the right situation.

IF games usually have many different locations and require the player to travel

between them without a map or any graphic support. We need to track every

location along with every object and the connectivity between places, which

sometimes is not Euclidean.

To tackle those challenges, we introduce Jericho, a learning environment

specific for IF games.

ATAI – Homework 1

3

II. Jericho

Jericho is an open source IF environment based on Python, which provides an

OpenAI-Gym-like interface for connecting learning agents with IF games. It

supports a variety of game genres of human-made IF, for example, Sci-Fi, horror

and mystery. Games are selected from Infocom. Following, we present the main

features Jericho provides to make IF games more accessible to existing agents:

Jericho can load and save game states that allow planning algorithms like

Monte-Carlo Tree Search. Jericho provides the option to seed the game’s

random number generation for replicability. Supported games use a point-based

scoring system, which serves as the agent’s reward.

- Template-Based Action Generation: Jericho can extract the game-specific

vocabulary and action templates. First, the agent takes an action template

containing up to blanks (i.e. throw __ to __), and then it fills the gaps with

words of the game vocabulary. This really helps reduce the combinatorial

action space. With Jericho’s vocabulary, you’re guaranteed to not miss

crucial words.

- World Object Tree: Is a representation of the game state, is used to codify

the relationship between objects and locations in the game world. An

object has a parent, children and siblings. For example, the player object

has his location as parent and his inventory items as children.

- Fixed random seed to enforce determinism: this opens up an opportunity to

use algorithms like Go-Explore, which requires a deterministic state

transition function.

- Load/save functionality: this feature allows us to use planning algorithms like

Monte-Carlo Tree Search, since we can restore previous states of the game.

- Identifying Valid Actions: These are actions that generate changes in the

game state. Jericho can detect valid actions by executing a candidate

action and providing feedback on the success or failure of an agent’s last

action to effect a change in the game state (world-object-tree). Jericho is

able to perform a search a identify all valid actions, this search is

implemented as follows:

ATAI – Homework 1

4

III. Algorithms

In this section, three agents are presented:

- Choice-based single-game agent (DRRN)

- Parser-based single-game agent (TDQN)

- Parser-based general-game agent (NAIL)

Single-game agents are trained and evaluated on the same game, and general-

game agents are trained and evaluated on unseen games.

Common Input Representation: The inputs are vectors that are converted with

an encoder using the following process: Observations are tokenized by a

SentencePiece model using a vocabulary trained on strings extracted from

sessions of humans playing IF games. This are processed by separate GRU

encoders for the narrative. The outputs of these encoders are concatenated into

a vector. DRRN and TDQN build on this representation.

DRRN: Deep Reinforcement Relevance Network. Algorithm designed for games

based in choices and present a set of valid actions at every game state. GRU is

used to codify all valid actions in a vector and then this vector and the

observation vector are concatenated. Using combined vector, DRRN calculates a

Q-Value for every valid action. The network is updated by sampling a minibatch

of transitions. DRRN uses Jericho’s handicaps 2 and 5.

TDQN: Agent for parser-based games, that takes from a pre-defined set of verbs

and objects and handles a combinatorial action space by generating verb-

objects actions. Template-DQN is an extension of LSTM-DQN, which takes

ATAI – Homework 1

5

templates instead of only verbs. TDQN estimate Q-values for the tree outputs,

template and two words that fill the template’s blanks. To help this agent a

supervised binary-cross entropy loss is introduced. The idea behind this loss is to

nudge the agent towards valid templates and words. TDQN uses the same

handicaps than DRRN.

NAIL: General-game agent designed to score the maximum as possible in a

single episode interaction of the game. NAIL uses no handicaps, a set of

manually-created heuristics is used to build a map of objects and locations, and

with that NAIL know if an action is valid or invalid. NAIL uses a web-based

language to decide how to interact with the objects.

IV. Experiments

a. Results

The agents (TDQN & DRRN) were evaluated across a diverse set of 32 games,

the aim of creating a reproducible benchmark to help the community track

progress and move the state of the art. The two learning agents were compared

with to two non-learning baseline agents:

- RAND: a random agent that picks randomly from a set of 12 common IF

actions at each step

- NAIL: a competition-winning heuristic-based IF agent

A completion rate of 100 percent means finishing the game with maximum

score. After the evaluation of the set of games, a completion rate is attributed

for each agent:

Agent RAND NAIL TDQN DRRN

Completion rate (%) 1.8 4.9 6.1 10.7

TDQN and DRRN accumulate significantly higher scores than the other agents.

ATAI – Homework 1

6

The success of these learning agents demonstrates Jericho is effective at

reducing the difficulty of IF games and making them more accessible for RL

agents to learn and improve language-based skills.

Jericho supports a variety of games, covering a diverse set of structures and

genres. These games were categorized into three difficulty tiers: Possible games,

Difficult games and extreme games. These categories of difficulties were

determined with different criteria: Template action space, solution length,

average steps per reward, stochastic, dialog, darkness, nonstandard actions,

inventory limit.

b. Example with Zork1

Final reported scores are an average over 5 runs of each

algorithm.

Let's see the raw score of each agent for the games “Zork1”.

Game |T | |V| RAND NAIL TDQN DRRN Max Score

Zork 1 237 697 0 10.3 9.9 32.6 350

|T | denotes the number of templates and |V| is the size of the parser’s vocabulary. The Max score is
the score to finnish the game.

Episode score as a function of training steps for DRRN. Shaded regions denote

standard deviation across five independent runs for the game:

ATAI – Homework 1

7

V. Conclusion

IF games are a challenge even for human players, Jericho has proven to be a

great experimental platform to reduce the problem complexity. Thanks to

Jericho templates and vocabulary extraction, Template-DQN agent was

introduced. The fact that DRRN, the choice-based agent, did a better job than

TQDN, reveals the difficulty of language generation.

NAIL algorithm showed worse performance than reinforcement learning agents.

However, DRRN and TDQN were trained and evaluated on individual games. This

leads us to conclude that obtaining a real general-purposes IF agent is still a

greater challenge.

Also, there is still several work to do regarding template-based agent: TDQN

algorithm computes independent Q-values for words and templates, conditional

generation is an improvement yet to be explored.

ATAI – Homework 1

8

VI. References

• "Interactive Fiction Games: A Colossal Adventure":
https://arxiv.org/pdf/1909.05398.pdf

• Jericho github: https://github.com/microsoft/jericho
• "Deep Reinforcement Learning with a Natural Language Action Space

(DRRN) ": https://arxiv.org/abs/1511.04636
• "Language Understanding for Text-based Games Using Deep

Reinforcement Learning (LSTM-DQN)": https://arxiv.org/abs/1506.08941
• "NAIL: A General Interactive Fiction Agent":

https://arxiv.org/abs/1902.04259
• DRRN and TDQN implementation: https://github.com/microsoft/tdqn
• NAIL implemetation: https://github.com/microsoft/nail_agent

https://arxiv.org/pdf/1909.05398.pdf
https://github.com/microsoft/jericho
https://arxiv.org/abs/1511.04636
https://arxiv.org/abs/1506.08941
https://arxiv.org/abs/1902.04259
https://github.com/microsoft/tdqn
https://github.com/microsoft/nail_agent

ATAI – Homework 1

9

VII. Appendices

Raw scores across Jericho supported games.

