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WHAT IS FAIRYTAILOR?

- A model for generating storytellings with text and images.
- Made by IBM researchers.
- Two different uses:

- Generate all the story using giving a title.
- Cooperate with writers.

- One prototype have been released.



DATASET USED

- Text dataset:
- Reddit’s WritersPrompt
- Manually made dataset of children’s 

books.

300.000 stories.

- Images:
- Flicker30

31.000 images.

PROMPT:
Every year, the richest person in America is declared the 
"Winner of Capitalism". They get a badge, and all of their wealth 
is donated to charity, so they have to start back up at $0

STORY CREATED BY ‘Damptruff1’:

The CEO sat in his office. It had a deep red for a carpet, and quite a few 
coffee stains. The walls were painted a beautiful white, with his desk and the 
cabinets made out of a wood with a rich brown. He himself wore a gray suit, 
with a red tie and a white undershirt. He preferred a sweater and 
sweatpants, but today was an important meeting...



SYSTEM ARCHITECTURE

Two architectures attempts:

1. Benchmark model

2. Final Design



Benchmark Design
- Generates text and accordingly retrieves images.

- Tests readability, diversity and sentiment of the generated text.

TEXT IMAGES

- Taken GPT-2 model two fine-tuning were made:

- Reddit WritingPrompt [Fan et al., 2018] to 

fine-tune the model to a prompt-story 

template.

- Adapt the model based on individually 

collected children’s books dataset.

- Tested model top-k random sampling method (with 

k=50) used in the Hierarchical Neural Story 

Geneation model (with k=10) [Fen et al., 2018]

- This architecture extracts most common nouns 
from the generated text

- Then, retrieve the corresponding images from 
Flickr30K [Plummer et al., 2017]



Benchmark architecture scheme



Limitations

- Text completions are often repetitive, incoherent, inappropriate and dark.

- The independently retrieved images are inconsistent

IMPROVEMENT



Final Design - Text modality
- Several re-ranker metrics added to increase the readability, positiviness, coherency and tale-like 

manner.

- The re-rankers computes the minmax (1) normalization to rescale each feature across all generated 

texts so that all features contribute equally.

(1)



Final design - Text modality

- The re-ranker frequency has been increased to obtain a coherent text generation, Re-rank after each 

end-of-sentence token

- Features taken into account in the re-ranks:
- Readability

- Positive Sentiment

- Diversity

- Simplicity

- Coherency

- Tale-like



Re-rank features
Readability

Calculates the length of sentences and length of words to estimate how complex the text is.

readability = 0.5 * word_chars + sent_words

Positive Sentiment 

- SentiWordnet [Baccianella et al., 2010] to compute positivity polarity, assign sentiment scores to each 

WordNet synonym group.

- WordNet is popular for information retrieval tasks and does not require pre-training.



Re-rank features
Simplicity

Calculates the fraction of tale-like characteristic words in the given text.

Diversity

Calculates the fraction of unique words from the total number of words.



Re-rank features
Coherency

Calculates the Latent Semantic Analysis (LSA) similarity within the story sentences compared to the first 

sentence. 

Tale-like

Tale like computes the KL divergence loss between a preset GPT-2 and a fine-tuned GPT-2 generated texts’ 

prediction scores. 



Image Modality

- Three open-source implementations for text to image synthesis are evaluated:
- BigGAN [Brock et al., 2018], 

- stackGAN [Zhang et al., 2017] 

- Dall-E [Ramesh et al.,2021]

- Image generation 4-30 s VS Image retrieval 0.5-2 s

- To compute the similarity between text and images, the cosine similarity of the 

text embeddings and the images embeddings are computed. 
- RETURN: the images’ ids of the highest-scoring images.

- The images’ consistency metric is calculated.



Final design scheme



Prototype “FairyTailor”

- Multimodal framework allowing story co-creation 
- Human writer starts in multiple ways
- FairyTailor autocompletes the rest
- Storytelling on a new level
- Perfect mix between human and machine
- DEMO

https://fairytailor.org/


Conclusion

- Well advanced technique
- Constantly developing 
- Used more and more
- Storytelling on a new level
- Perfect mix between human and machine
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